Time Dependent Heat Source Estimation by Conjugate Gradient Method in Multi-Layers System for Hyperthermia of Breast cancer

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 52

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JHMTR-7-2_003

تاریخ نمایه سازی: 24 شهریور 1403

چکیده مقاله:

Hyperthermia is a form of cancer treatment where the temperature of the tumor is elevated to levels that induce its elimination. This paper discusses using a heating power source to destroy breast cancer cells. The geometry of the breast tissue is represented as a hemisphere containing three layers; muscle, gland, and fat. The conjugate gradient method that is one of The most powerful iterative methods was used to solve the inverse heat conduction problem via the Pennes bioheat equation in an axisymmetric coordinate system, where the irregular region in the physical domain (r,z) was transformed into a rectangle in the computational domain (ξ, η). The performance of the algorithm was evaluated on a tested point located at the (۵, ۲) position, accounting for two temperature increments. The results confirmed the accuracy and viability of the algorithm, which makes this approach promising for the actual application for breast cancer treatment soon.

نویسندگان

Mohammad Mohammadiun

Department of Mechanical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran

Mansoureh Shariatmadar tehrani

Shahrood University of Technology

Mohammad Mohsen Shahmardan

Shahrood University of Technology

Mohammad Hasan Kayhani

Shahrood University of Technology

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • A. O. M., Inverse problems in identification and modeling of ...
  • J. Dutta, B. Kundu, A revised approach for an exact ...
  • J. Dutta, B. Kundu, Two-dimensional closed-form model for temperature in ...
  • O. M. Alifanov, Inverse heat transfer problems. (Springer Science & ...
  • H. H. Pennes, Analysis of tissue and arterial blood temperatures ...
  • P. Vernotte, Les paradoxes de la theorie continue de l′equation ...
  • C. Cattaneo, A form of heat conduction equation which eliminates ...
  • D. Y. Tzou, A Unified Field Approach for Heat Conduction ...
  • W.-Q. Lu, J. Liu, Y. Zeng, Simulation of the thermal ...
  • A. Zolfaghari, M. Maerefat, A new simplified thermoregulatory bioheat model ...
  • H. Ahmadikia, R. Fazlali, A. Moradi, Analytical solution of the ...
  • T.-C. Shih, P. Yuan, W.-L. Lin, H.-S. Kou, Analytical analysis ...
  • P. Yuan, H.-E. Liu, C.-W. Chen, H.-S. Kou, Temperature response ...
  • M. M. Tung, M. Trujillo, J. A. López Molina, M. ...
  • R. M. Cotta, B. P. Cotta, C. P. Naveira-Cotta, G. ...
  • H.-L. Lee, T.-H. Lai, W.-L. Chen, Y.-C. Yang, An inverse ...
  • M. Mohammadiun, Time-Dependent Heat Flux Estimation in Multi-Layer Systems by ...
  • M. Mohammadiun, A. B. Rahimi, Estimation of time-dependent heat flux ...
  • M. Mohammadiun, A. B. Rahimi, I. Khazaee, Estimation of the ...
  • A. Jalali, Ayani, M. B., Baghban, M., Simultaneous estimation of ...
  • L. A. Kengne. E, Bioheat transfer problem for one-dimensional spherical ...
  • M. B. A. M.Baghban, Source term prediction in a multilayer ...
  • E. Y. Ng, and Sudharsan, N. M., An Improved Three-Dimensional ...
  • A. Amri, Saidane, A., and Pulko, S., Thermal Analysis of ...
  • M. Shariatmadar tehrani/ JHMTR ۷ (۲۰۲۰) ۱۱۷- ۱۲۹ ۱۲۹Computers in ...
  • N. M. Sudharsan, and Ng, E. Y., Parametric Optimization for ...
  • M. P. Cetingul, and Herman, C., A Heat Transfer Model ...
  • L. Jiang, Zhan, W., and Loew, M. H., Modeling Static ...
  • O. R. B. Ozisik M.N., Inverse Heat Transfer. Taylor & ...
  • Ozisik M.N., Heat Conduction. second ed. Wiley, New York., (۱۹۹۳) ...
  • J. Daniel, The approximate minimisation of functionals Prentice-Hall. Inc., Englewood ...
  • O. M. Alifano, Inverse Heat Transfer Problems. Springer-Verlag, New York., ...
  • N. T. H. Jiang B.H., Prud’homme M., Control of the ...
  • نمایش کامل مراجع