Cardio and Neuroprotective Effects of Naringenin Against Aluminum Chloride-induced Oxidative Stress in Wistar Rats

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 48

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MEBIO-12-1_003

تاریخ نمایه سازی: 24 شهریور 1403

چکیده مقاله:

Background: Plant secondary metabolites have been reported to offer a wide variety of medicinal purposes, including protection against heavy metal toxicity. Objectives: This study aimed to investigate the potentiality of naringenin a flavonoid in ameliorating the antioxidant defense system of neural and cardiac cells against aluminum chloride (AlCl۳ ) toxicity in rats. Methods: The rats were divided into control (group ۱), AlCl۳ -treated (۲), AlCl۳+Naringenin-treated (۳), and Naringenin-treated (۴) groups. During experimentation, group ۲ received an oral dose of ۱۰۰ mg/kg/BW of AlCl۳ , and group ۳ received ۱۰۰ mg/kg/BW of AlCl۳ and ۵۰ mg/ kg/BW of naringenin. In addition, group ۴ received ۵۰ mg/kg/BW of naringenin each day, while group ۱ and all groups received a normal diet and water ad libitum for ۳۰ days. The animals were sacrificed, and then blood, brain, and heart tissues were collected for biochemical and histological studies. Results: The results revealed that naringenin administration ameliorates the antioxidant defense system (catalase [CAT], superoxide dismutase [SOD], glutathione peroxidase [GPx], and glutathione transferase) in AlCl۳ toxicity in neural and cardiac tissues. AlCl۳ caused oxidative tissue damage, showing a significant increase in malondialdehyde (MDA) (P<۰.۰۵) in both tissues. The levels of neurotransmitter acetylcholine esterase, nitric oxide, and lactate dehydrogenase (LDH) in the rats of group ۳ were significantly (P<۰.۰۵) higher compared with AlCl۳ -intoxicated rats. Furthermore, the AlCl۳ -administered group had significantly (P<۰.۰۵) elevated levels of total cholesterol (TC), triglycerides, and low-density lipoprotein-cholesterol, with reduced high-density lipoprotein-cholesterol levels in comparison to the naringenin-treated and control groups. Naringenin treatment normalized the lipid profile. Histological analysis using the hematoxylin and eosin staining method revealed that AlCl۳ caused degenerative changes in the cerebellum and cardiac tissues, which were ameliorated by co-treatment with naringenin. Conclusion: Naringenin has the potential to mitigate AlCl۳ -induced oxidative stress (OS) in the neural and cardiac tissues of rats by enhancing the antioxidant defense system and reversing tissue injuries in the brain and heart.