Designing a grounded theory-based model for talent management for future Iran
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 110
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-16-4_012
تاریخ نمایه سازی: 24 شهریور 1403
چکیده مقاله:
This research aims to design a Grounded Theory-based model for talent management for future Iran. Moving from the present to the future, the lack of human resources will become a serious problem for Iran. Therefore, to overcome the coming difficult days, it is necessary to identify and nurture the existing talent well, and since the best time to identify and develop talent is childhood, adolescence, and youth ages, and people are in school and university, at this age, so the education cycle is the best cycle for talent management. This research was conducted to compensate for the lack of human resources through optimal control of talent. The research method is sequential mixed (the qualitative section is preferred to the quantitative section). In the quantitative section, ۱۰ expert professors were interviewed, and the results were analyzed through the Grounded Theory method and ۱۲۲ codes were obtained as ۶ axial categories. Then, the model was designed. The designed model was tested using a sample including ۴۰۰ people and finally, suggestions were presented.
کلیدواژه ها:
نویسندگان
Javad Pasandideh
Department of Educational Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
Gholam Ali Ahmadi
Department of Educational Science, Faculty of Humanities, Shahid Rajaee Teacher Training University, Tehran, Iran
Zahra Sabaghian
Department of Educational Science, Faculty of Educational and Psychology, Shahid Beheshti University, Tehran, Iran
Narges Hasan Moradi
Department of Educational Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :