Predicting Hydraulic Jump Length on Rough Beds Using Data-Driven Models
سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 92
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CIVLJ-6-2_010
تاریخ نمایه سازی: 23 شهریور 1403
چکیده مقاله:
The hydraulic jump can be used for some purpose such as dissipating the flow energy in order to prevent bed erosion; aerating water and facilitating the mixing procedure of chemical that used for water purification. In this paper, various artificial intelligence (AI) models including gene expression programming (GEP), adaptive-neuro-fuzzy inference system with grid partition (ANFIS-GP), and neural networks (ANNs) were used to estimate developed and non-developed hydraulic jump length. Four various GEP, ANFIS-GP and ANN models including different combinations of Froude number, bed roughness height, upstream and downstream flow depth based on measured experimental data-set were developed to estimate hydraulic jump length variations. The root mean squared error (RMSE) and determination coefficient (R۲) indices were applied for testing models’ accuracy. Regarding the comparison results, it was seen that the ANFIS-GP, ANN, and GEP models could be employed successfully in estimating hydraulic jump length. The comparison between three AI approaches emphasized the superiority of ANNs and ANFIS-GP over the other intelligent models for modeling developed and non-developed hydraulic jump length, respectively. For non-developed hydraulic jump, the R۲ and RMSE values obtained as ۰.۸۷ and ۲.۸۴ for ANFIS-GP model.
کلیدواژه ها:
نویسندگان
Payam Khosravinia
water sciences and engineering,university of kurdistan,sanandaj,iran
Hadi Sanikhani
Assistant Professor at University of Kurdistan
Chonor Abdi
water sciences and engineering department,university of kurdistan-sanandaj-iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :