Fatigue Behavior Analysis of Asphalt Mixes Containing Electric Arc Furnace (EAF) Steel Slag
سال انتشار: 1394
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 102
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CIVLJ-3-1_006
تاریخ نمایه سازی: 23 شهریور 1403
چکیده مقاله:
This research was conducted in order to evaluate fatigue behavior of asphalt mixes containing Electric Arc Furnace (EAF) steel slag. After initial evaluation of the properties of EAF steel slag using X-ray Diffraction (XRD) and Scanning Electric Microscope (SEM), six sets of laboratory mixtures were prepared. Each set were treated replacing various portions of limestone aggregates of the mix with EAF steel slag. Four point bending beam fatigue tests were performed in both controlled strain and stress mode of loading at various strain and stress levels to characterize the fatigue behavior of asphalt mixes containing different percentages of EAF slag. Different approaches based on stiffness and dissipated energy were used to analyze the fatigue tests data. The results show that the inclusion of EAF in mixes improved the fatigue life considerably under both stress and strain control mode of loading. In the stress control mode, very good correlations were observed between responses and fatigue life of mixes. However, correlation coefficients in the strain control mode were relatively lower than those in the stress control mode (particularly in the tests that were based on ۵۰% reduction of initial stiffness).
کلیدواژه ها:
نویسندگان
Amir Kavussi
Associate Professor, Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
Morteza Jalili Qazizadeh
Assistant Professor, Faculty of Engineering, Quchan University of Advanced Technology, Quchan, Iran
Abolfazl Hassani
Professor, Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :