Modeling of Speed in Vehicles Entering Two-Way Suburban Tunnels by Adaptive Neuro Fuzzy Inference System

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 56

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CIVLJ-10-1_006

تاریخ نمایه سازی: 23 شهریور 1403

چکیده مقاله:

The behavior of drivers on the roads is elicited from the state of the surrounding environment. The author's research shows that the vehicle starts to decelerate at a certain distance from the tunnel when it is observed, and they have the lowest speed when reaching the beginning of the tunnel. As soon as the tunnel is passed, the vehicle increases speed again in a certain length. The main purpose of this study is to model the speed of vehicles entering suburban tunnels based on the speed changes before entering the tunnel using the neuro-fuzzy network. Then, to validate the designed model, the data of ۳۰ different drivers were used who travel in the same conditions by a Renault Logan vehicle with a manual transmission system. Using the Pearson correlation analysis method, the relationship between the variables of the speed of entrance to tunnel and changes in vehicle speed was investigated. The value of the correlation coefficient is equal to -۰.۷, which means the strong negative correlation between the two variables. The results show that the neuro-fuzzy network method has the ability to predict speed changes with a high accuracy based on the initial speed of entrance to the tunnel. The results of this study are used to analyze the behavior of drivers in suburban tunnels. Due to the importance of abrupt speed changes in an unusual way, especially on two-way routes, the safety of tunnels can be increased by reducing the stressors in drivers.

نویسندگان

Arash Jahantabi

Ph.D. Student, Civil Engineering Department, Payam Noor University, Tehran, Iran

Mahmood Reza Keymanesh

Associate Professor, Faculty of Engineering, Payam Noor University, Tehran, Iran

Seyed Ali Razavian Amrei

Assistant Professor, Faculty of Engineering, Payam Noor University, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • T. R. S. o. M. Tunnels, SWOV, The Netherlands: SWOV ...
  • C. Nussbaumer, "Comparative analysis of safety in tunnels," Young Reaserchers ...
  • L. Lu, J. Lu, Y. Xing, C. Wang and F. ...
  • F. Amundsen and A. Engebresten, "Studies on Norwegian Road Tunnels ...
  • F. Amundsen and G. Ranes, "Studies on traffic accidentin norwegian ...
  • K. Lemke, "Road Safety in tunnels," Transp. Rec. ۱۹۴۰, pp. ...
  • A. Jahantabi, M. Keymanesh and S. A. Razavian Amri, "Assessing ...
  • B. Shirgir and H. Hassanpour, "Analysis of Traffic Factors Affecting ...
  • Q. Hou, A. P. Tarko and X. Meng, "Analyzing crash ...
  • M. Soleymani Kermani and A. Namazian Jam, "Modifying PIARC’s Linear ...
  • Z. Ma, C. Shao and S. Zhang, "Characteristics of Traffic ...
  • M. M. Chatzimichailidou and I. M. Dokas, "RiskOAP: Introducing and ...
  • S. Bassan, "Sight distance and horizental curve aspects in the ...
  • E. E. Miller and L. N. Boyle, "Driver Behavior in ...
  • J. Yeung and Y. Wong, "Road Traffic Accidents in Singapore ...
  • A. Calvi, M. R. De Blasiis and C. Guattari, "An ...
  • A. SHIMOJO and H. TAKAGI, "A simulation Study of Driving ...
  • "Google Earth," ۲۰۱۹. [Online]. Available: https://www.google.com/maps ...
  • Q. Meng and X. Qu, "Estimation of rear-end vehicle crash ...
  • نمایش کامل مراجع