An Innovative Approach to Estimate Chloride Diffusion Coefficient in Submerged Concrete Structures Using Soft Computing

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 38

فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CIVLJ-11-3_005

تاریخ نمایه سازی: 23 شهریور 1403

چکیده مقاله:

Corrosion is one of the most important and common factors in the destruction of structures. Among all kinds of structures, corrosion of submerged structures is of great importance and prevalence due to the impossibility of direct visibility, high reconstruction cost and special environmental conditions. The work done in the field of corrosion of these structures has mainly dealt with modeling the problem in the form of mathematical formulation or using soft computing methods. The work that has established the connection between these two methods has not been done, to the best of our knowledge. This article aims to develop a model in order to estimate the chloride diffusion coefficient in rebar corrosion in submerged concrete structures. Present study seeks to address the estimation of chloride diffusion coefficient, which is one of the determinant factors in computing the corrosion time/rate of rebar’s. In this article, using the Monte Carlo sampling method and the formulas available for chloride diffusion coefficient, we produced ۲۰۰۰ artificial data samples. A variety of methods such as support vector machines (e.g., linear, quadratic, cubic, Gaussian), K-nearest neighbors (fine, medium, coarse KNN), and two methods of ensemble learning (bagged tree, subspace discriminant) are applied to predict the chloride diffusion coefficient. The results indicated that the quadratic support vector method (with ۹۳.۵% accuracy) is the best technique in estimating the chloride diffusion coefficient. Best KNN model (medium KNN) and best ensemble method (bagged tree) have accuracy of ۵۹.۹% and ۸۱.۳%, resp.

نویسندگان

Seyyed Ali Habibi

Ph.D. Student, Department of Civil Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran

Ali Hemmati

Assistant Professor, Department of Civil Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran

Hosein Naderpour

Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Karuppanasamy J, Pillai RG. Statistical Distributions for the Corrosion Rates ...
  • Ramezanianpou AA, Jahangiri E, Moodi F, Ahmadi B. Assessment of ...
  • Chou JS, Ngo NT, Chong WK. The use of artificial ...
  • Sadowski L. Non-destructive investigation of corrosion current density in steel ...
  • Jahangir H, Nikkhah Z, Rezazadeh Eidgahee D, Esfahani MR. Performance ...
  • Jiménez-Come MJ, Muñoz E, García R, Matres V, Martín ML, ...
  • Papadimitropoulos VC, Tsikas PK, Chassiakos AP. Modeling the Influence of ...
  • Mousavifard SM, Attar MM, Ghanbari A, Dadgar M. Application of ...
  • Chen B, Zang C. Artificial immune pattern recognition for structure ...
  • Taffese WZ, Sistonen E. Significance of chloride penetration controlling parameters ...
  • Fakharian P, Rezazadeh Eidgahee D, Akbari M, Jahangir H, Ali ...
  • Kontoni D-PN, Onyelowe KC, Ebid AM, Jahangir H, Rezazadeh Eidgahee ...
  • Ghanizadeh AR, Ghanizadeh A, Asteris PG, Fakharian P, Armaghani DJ. ...
  • Khademi A, Behfarnia K, Kalman Šipoš T, Miličević I. The ...
  • Rezazadeh Eidgahee D, Haddad A, Naderpour H. Evaluation of shear ...
  • Naderpour H, Haji M, Mirrashid M. Shear capacity estimation of ...
  • Naderpour H, Mirrashid M. Proposed soft computing models for moment ...
  • Naderpour H, Mirrashid M. Moment capacity estimation of spirally reinforced ...
  • Atha DJ, Jahanshahi MR. Evaluation of deep learning approaches based ...
  • Naderpour H, Sharei M, Fakharian P, Heravi MA. Shear Strength ...
  • Rezazadeh Eidgahee D, Jahangir H, Solatifar N, Fakharian P, Rezaeemanesh ...
  • Onyelowe KC, Rezazadeh Eidgahee D, Jahangir H, Aneke FI, Nwobia ...
  • Salahudeen AB, Jalili M, Eidgahee DR, Onyelowe KC, Kabiri MK. ...
  • Naderpour H, Rezazadeh Eidgahee D, Fakharian P, Rafiean AH, Kalantari ...
  • Naderpour H, Noormohammadi E, Fakharian P. Prediction of Punching Shear ...
  • Angst UM. Predicting the time to corrosion initiation in reinforced ...
  • Khan MU, Ahmad S, Al-Gahtani HJ. Chloride-Induced Corrosion of Steel ...
  • Femenias Y, Angst U, Moro F, Elsener B. Development of ...
  • Ghanooni Bagha M, Asgarani S. Influence of effective chloride corrosion ...
  • Nogueira CG, Leonel ED. Probabilistic models applied to safety assessment ...
  • نمایش کامل مراجع