An Innovative Approach to Estimate Chloride Diffusion Coefficient in Submerged Concrete Structures Using Soft Computing
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 38
فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CIVLJ-11-3_005
تاریخ نمایه سازی: 23 شهریور 1403
چکیده مقاله:
Corrosion is one of the most important and common factors in the destruction of structures. Among all kinds of structures, corrosion of submerged structures is of great importance and prevalence due to the impossibility of direct visibility, high reconstruction cost and special environmental conditions. The work done in the field of corrosion of these structures has mainly dealt with modeling the problem in the form of mathematical formulation or using soft computing methods. The work that has established the connection between these two methods has not been done, to the best of our knowledge. This article aims to develop a model in order to estimate the chloride diffusion coefficient in rebar corrosion in submerged concrete structures. Present study seeks to address the estimation of chloride diffusion coefficient, which is one of the determinant factors in computing the corrosion time/rate of rebar’s. In this article, using the Monte Carlo sampling method and the formulas available for chloride diffusion coefficient, we produced ۲۰۰۰ artificial data samples. A variety of methods such as support vector machines (e.g., linear, quadratic, cubic, Gaussian), K-nearest neighbors (fine, medium, coarse KNN), and two methods of ensemble learning (bagged tree, subspace discriminant) are applied to predict the chloride diffusion coefficient. The results indicated that the quadratic support vector method (with ۹۳.۵% accuracy) is the best technique in estimating the chloride diffusion coefficient. Best KNN model (medium KNN) and best ensemble method (bagged tree) have accuracy of ۵۹.۹% and ۸۱.۳%, resp.
کلیدواژه ها:
نویسندگان
Seyyed Ali Habibi
Ph.D. Student, Department of Civil Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran
Ali Hemmati
Assistant Professor, Department of Civil Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran
Hosein Naderpour
Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :