Presenting a Statistical Model of Fatigue Prediction for the Effect of Loading Frequency on Reflective Cracks Propagation on Asphalt Layers Improved by Geosynthetics
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 139
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CIVLJ-12-1_002
تاریخ نمایه سازی: 23 شهریور 1403
چکیده مقاله:
So far, several methods have been proposed for delaying the reflective cracks in pavements. Despite substantial money spent annually on these types of maintenance methods to control reflection cracking in road pavement, none of them has successfully prevented such damage and only delayed crack propagation in improved asphalt overlays. However, some of these methods have been more effective in preventing the initiation of reflective cracks and reducing the severity of their damage in restored pavements. One of the best methods to deal with this issue is using geosynthetic products. The present study investigates the performance of two different types of geocomposites in the reinforcement of asphalt overlays in delaying reflective cracks compared to control samples. To this end, laboratory and statistical studies were performed at different temperatures and loading frequencies. The results showed that using type-I geocomposite will be most effective in increasing fatigue life. On the other hand, among the mentioned factors, the temperature rise will have the most negative effect on the fatigue performance of geocomposite layers in asphalt overlays. Finally, a high-accuracy statistical model of fatigue life based on temperature, frequency, and geocomposite type is presented (i.e., R² and Adjusted R² of ۰.۹۸۷ and ۰.۹۸۱, respectively).
کلیدواژه ها:
نویسندگان
Saeid Asadi
Ph.D. Candidate, Faculty of Civil Engineering, Semnan University, Semnan, Iran
Gholamali Shafabakhsh
Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :