Differential-integral Euler–Lagrange equations

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 58

فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAO-14-30_002

تاریخ نمایه سازی: 17 شهریور 1403

چکیده مقاله:

We study the calculus of variations problem in the presence of a system of differential-integral (D-I) equations. In order to identify the necessary optimality conditions for this problem, we derive the so-called D-I Euler–Lagrange equations. We also generalize this problem to other cases, such as the case of higher orders, the problem of optimal control, and we derive the so-called D-I Pontryagin equations. In special cases, these formulations lead to classical Euler–Lagrange equations. To illustrate our results, we provide simple examples and applications such as obtaining the minimumpower for an RLC circuit.

نویسندگان

Mohammedd Shehata

Department of Basic Science, Bilbeis Higher Institute for Engineering, Sharqia, Egypt.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Andrade, B. On the well-posedness of a Volterra equation with ...
  • Angell, T.S. On the optimal control of systems governed by ...
  • Belbas, S.A. A reduction method for optimal control of Volterra ...
  • Brunt, B. The calculus of variations, Universitext, Springer-Verlag, New York, ...
  • Dacorogna, B. Introduction to the calculus of variations, Imperial College ...
  • Dmitruk, A.V. and Osmolovskii, N.P. Necessary conditions for a weak ...
  • A robust method for optimal control problems governed by system of Fredholm integral equations in mechanics [مقاله ژورنالی]
  • Goldstine, H.H. A history of the calculus of variations from ...
  • Han, S., Lin, P. and Yong, J. Causal state feedback ...
  • Kamien, M.I. and Muller, E. Optimal control with integral state ...
  • Liberzon, D. Calculus of variations and optimal control theory: A ...
  • Shehata, M. From calculus to α calculus, Progr. Fract. Differ. ...
  • Shehata, M. Computing exact solution for linear integral quadratic con-trol ...
  • Shehata, M. and Khalil, A.A. Algorithm for computing exact solution ...
  • Vega, C. Necessary conditions for optimal terminal time control problems ...
  • Vijayakumar, V. Approximate controllability results for analytic resol-vent integro-differential inclusions ...
  • نمایش کامل مراجع