Finite element analysis for microscale heat equation with Neumann boundary conditions

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 73

فایل این مقاله در 37 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAO-14-30_007

تاریخ نمایه سازی: 17 شهریور 1403

چکیده مقاله:

In this paper, we explore the numerical analysis of the microscale heat equation. We present the characteristics of numerical solutions obtained through both semi- and fully-discrete linear finite element methods. We establish a priori estimates and error bounds for both semi-discrete and fully-discrete finite element approximations. Additionally, the existence and uniqueness of the semi-discrete and fully-discrete finite element ap-proximations have been confirmed. The study explores error bounds in various spaces, comparing the semi-discrete to the exact solutions, the semi-discrete against the fully-discrete solutions, and the fully-discrete solutions with the exact ones. A practical algorithm is introduced to address the sys-tem emerging from the fully-discrete finite element approximation at every time step. Additionally, the paper presents numerical error calculations to further demonstrate and validate the results.

نویسندگان

M.H. Hashim

Department of Mathematics, College of Sciences, University of Basrah, Basrah, Iraq.

A.J. Harfash

Department of Mathematics, College of Sciences, University of Basrah, Basrah, Iraq.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abbaszadeh, M. and Dehghan, M. Investigation of heat transport equa-tion ...
  • Al-Juaifri, G.A. and Harfash, A.J. Finite element analysis of nonlinear ...
  • Al-Musawi, G.A. and Harfash, A.J. Finite element analysis of extended ...
  • Baharlouei, S., Mokhtari, R. and Chegini, N. Solving two-dimensional coupled ...
  • Biazar, J. and Salehi, F. Chebyshev Galerkin method for integro-differential ...
  • Castro, MA. , Rodríguez F., Cabrera, J., and Martín, J.A. ...
  • Ciarlet, P.G. The finite element method for elliptic problems, SIAM, ...
  • Ciavaldini, J.F. Analyse numerique d’un problème de Stefan à deux ...
  • Ern, A. and Guermond, J.L. Theory and practice of finite ...
  • Harfash, A.J. High accuracy finite difference scheme for three-dimensional microscale ...
  • Hashim, M.H. and Harfash, A.J. Finite element analysis of a ...
  • Hashim, M.H. and Harfash, A.J. Finite element analysis of a ...
  • Hashim, M.H. and Harfash, A.J. Finite element analysis of attraction-repulsion ...
  • Hashim, M.H. and Harfash, A.J. Finite element analysis of attraction-repulsion ...
  • Hassan, S.M. and Harfash, A.J. Finite element analysis of a ...
  • Hassan, S.M. and Harfash, A.J. Finite element analysis of the ...
  • Hassan, S.M. and Harfash, A.J. Finite element approximation of a ...
  • Hassan, S.M. and Harfash, A.J. Finite element analysis of chemotaxis-growth ...
  • Joseph, D.D. and Preziosi, L. Heat waves, Rev. Modern Phys. ...
  • Joshi, A.A. and Majumdar, A. Transient ballistic and diffusive phonon ...
  • Nikan, O., Avazzadeh, Z., and Tenreiro Machado, J.A. Numerical treat-ment ...
  • Pajand, M.R., Moghaddam, N.G. and Ramezani, M.R. Review of the ...
  • Qiu, T.Q. and Tien, C.L. Short-pulse laser heating on metals, ...
  • Qiu, T.Q. and Tien, C.L. Heat transf. mechanisms during short-pulse ...
  • Tzou, D.Y. Experimental support for the lagging behavior in heat ...
  • Tzou, D.Y. The generalized lagging response in small-scale and high-rate ...
  • Tzou, D.Y. A unified field approach for heat conduction from ...
  • Yeganeh, S., Mokhtari, R. and Fouladi, S. Using a LDG ...
  • Youssri, Y.H. and Atta, A.G. Modal spectral Tchebyshev Petrov–Galerkin stratagem ...
  • Zhang, J. and Zhao, J.J. High accuracy stable numerical solution ...
  • Zhang, J. and Zhao, J.J. Iterative solution and finite difference ...
  • Zhang, J. and Zhao, J.J. Unconditionally stable finite difference scheme ...
  • نمایش کامل مراجع