Dynamic Pit Tracker: An Iterative Heuristic Algorithm Tracing Optimized Solution for Ultimate Pit Limit and Blocks Sequencing Problem
محل انتشار: مجله معدن و محیط زیست، دوره: 15، شماره: 4
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 145
فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMAE-15-4_012
تاریخ نمایه سازی: 17 شهریور 1403
چکیده مقاله:
One of the most critical designs in open-pit mining is the ultimate pit limit (UPL). The UPL is frequently computed initially through profit-maximizing algorithms like the Lerchs-Grossman (LG). Then, in order to optimize net present value (NPV), production planning is executed for the blocks that fall within the designated pit limit. This paper presents a mathematical model of the UPL with NPV maximization, enabling simultaneous determination of the UPL and long-term production planning. Model behavior is nonlinear. Thus, in order to achieve model linearization, the model has been partitioned into two linear sub-problems. The procedure facilitates the model solution and the strategy by decreasing the number of decision variables. Naturally, the model is NP-Hard. As a result, in order to address the issue, the Dynamic Pit Tracker (DPT) heuristic algorithm was devised, accepting economic block models as input. A comparison is made between the economic values and positional weights of blocks throughout the steps in order to identify the most appropriate block. The outcomes of the mathematical model, LG, and Latorre-Golosinski (LAGO) algorithms were assessed in relation to the DPT on a two-dimensional block model. Comparative analysis revealed that the UPLs generated by these algorithms are consistent in this instance. Utilizing the new algorithm to determine UPL for a ۳D block model revealed that the final pit profit matched LG UPL by ۹۷.۹۵%.
کلیدواژه ها:
نویسندگان
Meisam Saleki
School of Materials and Minerals Resources Engineering, Universiti Sains Malaysia (USM), Malaysia
Reza Khaloo Kakaie
Faculty of Mining, Petroleum & Geophysics Eng., Shahrood University of Technology, Shahrood, Iran
Mohammad Ataei
Faculty of Mining, Petroleum & Geophysics Eng., Shahrood University of Technology, Shahrood, Iran
Ali Nouri Qarahasanlou
Faculty of Science and Technology, UiT, The Arctic University of Norway, Tromsø, Norway
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :