Isolation and Molecular Identification of Acinetobacter baumannii From Urinary Tract Infection in Diyala Province, Iraq
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 47
نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMM-18-3_007
تاریخ نمایه سازی: 17 شهریور 1403
چکیده مقاله:
Background and Objective: Acinetobacter baumannii is one of the most prominent opportunistic bacterial pathogens associated with hospital-acquired infections and has been associated with antibiotic resistance. The high rates of resistance have made it difficult to choose the appropriate treatment and put the lives of infected patients at risk of death. This study aimed to isolate A. baumannii from urinary tract infections (UTI) and detect the bacterial ability to form biofilms from clinical samples.
Methods: In this study, A. baumannii bacteria were isolated from several sources (UTI). The microtiter plate method revealed biofilm formation. Clinical specimens were grown on selective media. The A. baumannii was identified by classical techniques; the VITECK combined ۲ system and ۱۶S rRNA gene amplification.
Results: From the ۱۳۰ suspected isolates, ۲۰ isolates were obtained from A. baumannii multidrug-resistant (MDR) and extensively drug-resistant (XDR) types. Among them, ۱۴ (۷۰%) were MDR and ۶ (۳۰%) were XDR types.
Conclusion: The results showed that A. baumannii bacteria were more resistant to antibiotics and had strong biofilm formation.
کلیدواژه ها:
نویسندگان
Hanan Raheem Hassooni
Department of Internal Medicine, College of Medicine, University of Diyala, Diyala, Iraq
Raghad Ibrahim Ahmed
Department of Biology, College of Science, University of Diyala, Diyala, Iraq
Zainab M. Alzubaidy
Department of Biology, College of Science, University of Diyala, Diyala, Iraq
Adil Hassan Alhusseiny
Department of Internal Medicine, College of Medicine, University of Diyala, Diyala, Iraq
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :