On the approximate solution of the cauchy problem for the helmholtz equation on the plane
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 130
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CAND-3-3_001
تاریخ نمایه سازی: 17 شهریور 1403
چکیده مقاله:
In this paper, approximate solutions of the Cauchy problem for the Helmholtz equation on a two-dimensional bounded region are found. The problem under consideration belongs to the problems of mathematical physics, in which there is no continuous dependence of solutions on the initial data. When solving applied problems, it is necessary to find not only an approximate solution but also a derivative of the approximate solution. It is assumed that a solution to the problem exists and is continuously differentiable in a closed domain with exactly given Cauchy data. For this case, an explicit formula for the continuation of the solution and its derivative is established, as well as a regularization formula for the case when, under the specified conditions, instead of the initial Cauchy data, their continuous approximations with a given error in the uniform metric are given. Stability estimates for the solution of the Cauchy problem in the classical sense are obtained.
کلیدواژه ها:
نویسندگان
Davron Juraev
Department of Scientific Research, Innovation and Training of Scientific and Pedagogical Staff, University of Economy and Pedagogy, Karshi ۱۸۰۱۰۰, Uzbekistan.
Nazira Mammadzada
State Oil Company of the Azerbaijan Republic, Oil, and Gas Scientific Research ProjectInstitute, Baku, AZ۱۱۲۲, Azerbaijan.
Praveen Agarwal
Department of Mathematics, Anand International College of Engineering, Jaipur ۳۰۳۰۱۲, India.
Shilpi Jain
Poornima College of Engineering, University of Rajasthan, Jaipur ۳۰۲۰۲۲۲, India.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :