An SR۱/BFGS Projected Exact Penalty Method for Constrained Nonlinear Optimization

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 121

متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICIORS17_192

تاریخ نمایه سازی: 5 شهریور 1403

چکیده مقاله:

We propose a combined symmetric rank one (SR۱) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) updating scheme to approximate projected Hessians in an exact penalty algorithm for solving general nonlinear optimization problems. We have three iterations types: “infeasible”, “almost feasible” and “local”. In an infeasible iteration, a descent direction is computed for the penalty function. In an almost feasible iteration, the step direction is a combination of a horizontal direction for reducing the penalty function and a vertical direction for maintaining feasibility. The projected Hessians in infeasible and almost feasible iterations are updated with the SR۱ formula. During local iterations, when an iterate is near stationarity, the Lagrange multipliers are calculated by solving a linear least squares problem. If the computed Lagrange multipliers satisfy the first-order optimality conditions, a Newton step direction is computed to obtain a superlinear rate of convergence to a stationary point of the problem. Otherwise, a dropping step is calculated to decrease the penalty function value. In local iterations, BFGS updating formula is used to update the projected Hessian of the penalty function. Comparative numerical experiments on some test problems from the CUTEst library confirm the efficiency of the proposed algorithm as compared to the four well-known software packages: KNITRO/Active-Set, SNOPT, filterSQP and LANCELOT.

نویسندگان

Hani Ahmadzadeh

Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran

Nezam Mahdavi-Amiri

Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran