Effect of Number of Exploration Criteria in Data-driven Mineral Potential Mapping Approaches

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 88

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-37-12_009

تاریخ نمایه سازی: 3 شهریور 1403

چکیده مقاله:

This paper investigates the effect of the number of input exploration control layers on the prediction ability of the ensuing mineral potential models. For this purpose, several weighted control layers were first produced through different exploration methods. Then, the layers were combined in two individual procedures by using two and three input control layers. The prediction rates were evaluated and compared with the location of known mineral occurrences. In addition, this paper reviews improved multi-class data-driven index overlay for Mineral potential mapping (MPM) and identifying the promising areas, and then, uses the method to identify the exploration targets for lead, zinc, and copper skarn mineralization in the Mahneshan area in Zanjan province, west of Iran. The exploration control layers, including the geological, fault density, and geochemical maps, were produced and integrated for this purpose. A Critical limitation of this method, which is weighting each class of geochemical and fault density maps without expert judgment, was resolved in this paper. After producing the weighted evidential maps of each layer, in order to evaluate the relative importance of different exploration methods, weights were attributed to the layers to evaluate their relative importance in terms of their ability to predict undiscovered Pb-Zn-Cu skarn mineralization. Finally, the three layers were combined using the multi-class index overlay method in which the data were categorized into different classes to determine exploration targets. The areas with high mineralization potential produced in the final mineral potential model properly predict the existing mineral occurrences in the region studied. Also, new areas were identified that could be explored in more detail.

کلیدواژه ها:

Mineral potential mapping ، Multi-Class Data-driven Index Overlay ، Skarn mineralization ، Mineral Potential Model ، Prediction of Undiscovered Pb-Zn-Cu

نویسندگان

A. Agah

Department of Mining Engineering, University of Sistan and Baluchestan, Zahedan, Iran

E. Ghadirisufi

Department of Mining Engineering, Arak University of Technology, Arak, Iran

M. Yousefi

Faculty of Engineering, Malayer University, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Bonham-Carter G. Geographic information systems for geoscientists: modelling with GIS: ...
  • Carranza EJM. Geochemical anomaly and mineral prospectivity mapping in GIS: ...
  • Madani AA. Knowledge-driven GIS modeling technique for gold exploration, Bulghah ...
  • Porwal A, Carranza E, Hale M. Knowledge-driven and data-driven fuzzy ...
  • Abedi M, Norouzi G-H, Fathianpour N. Fuzzy outranking approach: a ...
  • Carranza EJM. Controls on mineral deposit occurrence inferred from analysis ...
  • Nykänen V, Salmirinne H. Prospectivity analysis of gold using regional ...
  • Carranza EJM. Objective selection of suitable unit cell size in ...
  • Yousefi M, Kamkar-Rouhani A, Carranza EJM. Geochemical mineralization probability index ...
  • Yousefi M, Carranza EJM, Kamkar-Rouhani A. Weighted drainage catchment basin ...
  • Billa M, Cassard D, Lips AL, Bouchot V, Tourlière B, ...
  • Chica-Olmo M, Abarca F, Rigol J. Development of a decision ...
  • Yousefi M, Carranza EJM. Data-driven index overlay and Boolean logic ...
  • Yousefi M, Kamkar-Rouhani A, Carranza EJM. Application of staged factor ...
  • Yousefi M, Carranza EJM. Prediction–area (P–A) plot and C–A fractal ...
  • Reimann C, Filzmoser P. Normal and lognormal data distribution in ...
  • Canet C, González-Partida E, Camprubí A, Castro-Mora J, Romero FM, ...
  • Wan B, Xiao W, Zhang L, Han C. Iron mineralization ...
  • Xiao F, Chen J, Zhang Z, Wang C, Wu G, ...
  • Meinert LD, Dipple GM, Nicolescu S. World skarn deposits. ۲۰۰۵ ...
  • Meinert LD. Skarns and skarn deposits. Geoscience Canada. ۱۹۹۲ ...
  • Porwal AK. Mineral potential mapping with mathematical geological models. ۲۰۰۶ ...
  • Porwal A, Carranza E, Hale M. A hybrid neuro-fuzzy model ...
  • نمایش کامل مراجع