Adjusted empirical likelihood analysis of restricted mean survival time for length-biased data
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 69
فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_KJMMRC-13-2_022
تاریخ نمایه سازی: 30 مرداد 1403
چکیده مقاله:
The Restricted Mean Survival Time (RMST) serves as a valuable and extensively utilized metric in clinical trials. However, its application becomes intricate when dealing with data affected by length-biased sampling, rendering traditional inference strategies inadequate. To overcome this challenge, we advocate for the adoption of nonparametric techniques. One notably promising approach is the Empirical Likelihood (EL) method, which furnishes robust results without the need for stringent parametric assumptions. In practical scenarios, the underlying sampling distributions often remain elusive, necessitating adjustments in the case of parametric methodologies. The EL method has demonstrated its efficacy in addressing such complexities. Consequently, this paper introduces the EL method for computing RMST in situations involving both length-biased and right-censored data. Additionally, we introduce the concept of adjusted empirical likelihood (AEL) to further enhance the coverage probability, particularly when dealing with smaller sample sizes. To gauge the performance of the EL and AEL methods, we conduct simulations and rigorously compare their results. The findings unequivocally demonstrate that AEL-based confidence intervals consistently provide superior coverage probability when juxtaposed with EL-based intervals. Lastly, we substantiate the practical applicability of our proposed method by employing it in the analysis of a real dataset.
کلیدواژه ها:
Adjusted empirical likelihood ، Empirical likelihood ، Restricted mean survival time ، Non-parametric ، Length-biased data
نویسندگان
Zahra Mohammadian
Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, P.O. Box ۱۱۵۹ Mashhad ۹۱۷۷۵, Mashhad, Islamic Republic of Iran
Arezoo Habibi
Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, P.O. Box ۱۱۵۹ Mashhad ۹۱۷۷۵, Mashhad, Islamic Republic of Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :