Enhancing Spatial Pooler Performance in Hierarchical TemporalMemory Algorithm through Sparsification Analysis: An Information TheoryPerspective

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 125

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CECCONF23_002

تاریخ نمایه سازی: 29 مرداد 1403

چکیده مقاله:

Hierarchical Temporal Memory (HTM) is an unsupervised machine learning algorithm inspired byneocortical computational principles. The Spatial Pooler (SP), a core component of HTM, converts binaryinput into sparse distributed representations. This study examines SP's sparsification through aninformation theory perspective, demonstrating that increased sparsity enhances SP's performance.Comparative analyses using Gaussian and non-Gaussian (e.g., Cauchy distribution) data distributionsreveal that sparsity levels significantly impact SP's output, as assessed by the Cramer–Rao lower bound.Our findings highlight the critical role of sparsity in optimizing SP's performance and offer insights forthe design and optimization of HTM algorithms

کلیدواژه ها:

Spatial Pooler (SP) ، Hierarchical Temporal Memory (HTM) ، Sparsity ، Fishery informationmatrix (FIM) ، Cramer-Rao Lower Bound (CRLB)

نویسندگان

Shiva Sanati

Dept. of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Modjtaba Rouhani

Dept. of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Ghosheh Abed Hodtani

Dept. of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran