Enhancing Spatial Pooler Performance in Hierarchical TemporalMemory Algorithm through Sparsification Analysis: An Information TheoryPerspective
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 125
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CECCONF23_002
تاریخ نمایه سازی: 29 مرداد 1403
چکیده مقاله:
Hierarchical Temporal Memory (HTM) is an unsupervised machine learning algorithm inspired byneocortical computational principles. The Spatial Pooler (SP), a core component of HTM, converts binaryinput into sparse distributed representations. This study examines SP's sparsification through aninformation theory perspective, demonstrating that increased sparsity enhances SP's performance.Comparative analyses using Gaussian and non-Gaussian (e.g., Cauchy distribution) data distributionsreveal that sparsity levels significantly impact SP's output, as assessed by the Cramer–Rao lower bound.Our findings highlight the critical role of sparsity in optimizing SP's performance and offer insights forthe design and optimization of HTM algorithms
کلیدواژه ها:
Spatial Pooler (SP) ، Hierarchical Temporal Memory (HTM) ، Sparsity ، Fishery informationmatrix (FIM) ، Cramer-Rao Lower Bound (CRLB)
نویسندگان
Shiva Sanati
Dept. of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
Modjtaba Rouhani
Dept. of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
Ghosheh Abed Hodtani
Dept. of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran