A New Approach for Modeling Vehicle Safety Based on Cooperative Awareness in Emergency Scenarios
سال انتشار: 1391
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,725
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
SASTECH07_085
تاریخ نمایه سازی: 30 تیر 1392
چکیده مقاله:
Supporting of Safety Applications is the main motivation behind the development of Vehicular Networks. These applicationsare supposed to specify the safety level of the current situation and then, inform the control system or the driver. The successof safety applications relies on delivering messages in a timely manner. Delivered messages are used to establish a certain levelof awareness about the surrounding area for the receiver vehicle. Successive message losses will degrade the reliability of safetyapplications and also, reduce the level of awareness. So, determining the impact of successive packet losses on safety and awarenessis important. This paper models the safety and awareness values according to successive message losses using Markov chain model.Our model provides some new guidelines for analyzing a vehicle’s safety based on the current situation of the network and thevehicle’s kinematical properties. This model gives us the channel situation as well as the vehicle’s risk value. In the proposedmodel, the uncertainty of the driver perception about an upcoming event due to the lack of information is also taken into account.We numerically investigate the impact of distance and velocity on safety. The safety applications can use this model to makedecisions in order to prevent the upcoming accidents.
کلیدواژه ها:
نویسندگان
Seyed Mohammad Hosseini
Department of Engineering, Faculty of Computer Engineering,Urmia University
Saleh Yousefi Rad
Yousefi,Department of Engineering, Faculty of Computer Engineering, Urmia University
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :