Modeling polymer meta-heuristic algorithms with thermal and electrical performance criteria
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 85
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
SECONGRESS02_237
تاریخ نمایه سازی: 19 مرداد 1403
چکیده مقاله:
Here, we use a nature-mimicking optimization method, the genetic algorithm, alongside ML-based predictive models to design polymers whose practically useful but severe property criteria (i.e., glass transition temperature, Tg > ۵۰۰ K, and band gap, to eg > ۶ eV). Similar to nature, the characteristic properties of a polymer are assumed by the constituent types and the sequence of chemical building blocks (or fragments) in the monomer unit. Data-driven or machine learning (ML) methods have recently been used in materials science to provide rapid predictions of material properties. Although these predictive models are powerful and robust, they are still limited in their application to the design of materials with target properties or performance goals. The evolution of polymers by natural crossover, mutation and selection operations over ۱۰۰ generations resulted in ۱۳۲ new (compared to ۴ previously known) chemically unique polymers with high Tg and Eg. The chemical guidelines for the parts that make up the polymers with extreme thermal and electrical performance criteria are selected and revealed by the algorithm. The approach presented here is general and can be extended to design polymers with different characterization goals.
کلیدواژه ها:
نویسندگان
Solheil Seirafi
Ph.D. Mechatronics Department of Electrical Engineering, Ostim Teknik University ”Tekno Park”, Ankara, Turkey
Yusof Torki
BS.C , Yusof Torki ,Isfahan, Iran
Ali Razi
MS.C, Ali Razi ,Isfahan, Iran