Framing Bias in the Interpretation of Quality Improvement Data: Evidence From an Experiment
سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 208
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_HPM-8-5_007
تاریخ نمایه سازی: 18 مرداد 1403
چکیده مقاله:
Background A growing body of public management literature sheds light on potential shortcomings to quality improvement (QI) and performance management efforts. These challenges stem from heuristics individuals use when interpreting data. Evidence from studies of citizens suggests that individuals’ evaluation of data is influenced by the linguistic framing or context of that information and may bias the way they use such information for decision-making. This study extends prospect theory into the field of public health QI by utilizing an experimental design to test for equivalency framing effects on how public health professionals interpret common QI indicators. Methods An experimental design utilizing randomly assigned survey vignettes is used to test for the influence of framing effects in the interpretation of QI data. The web-based survey assigned a national sample of ۲۸۶ city and county health officers to a “positive frame” group or a “negative frame” group and measured perceptions of organizational performance. The majority of respondents self-report as organizational leadership. Results Public health managers are indeed susceptible to these framing effects and to a similar degree as citizens. Specifically, they tend to interpret QI information presented in a “positive frame” as indicating a higher level of performance as the same underlying data presenting in a “negative frame.” These results are statistically significant and pass robustness checks when regressed against control variables and alternative sources of information. Conclusion This study helps identify potential areas of reform within the reporting aspects of QI systems. Specifically, there is a need to fully contextualize data when presenting even to subject matter experts to reduce the existence of bias when making decisions and introduce training in data presentation and basic numeracy prior to fully engaging in QI initiatives.
کلیدواژه ها:
نویسندگان
Andrew Ballard
School of Public Affairs and Administration, Rutgers University, Newark, NJ, USA
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :