Reactive Power Market Simulation: A Particle Swarm Optimization Approach
محل انتشار: بیستمین کنفرانس بین المللی برق
سال انتشار: 1384
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 1,311
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
PSC20_176
تاریخ نمایه سازی: 8 آذر 1385
چکیده مقاله:
This paper deals with the application of Particle Swarm Optimization algorithm (PSO) for reactive power scheduling in deregulated power system. Reactive power procurement is modeled as a security constraint optimal power flow incorporating voltage stability problem. The model attempts to minimize cost of reactive power procurement and energy losses as a main objective while technical criteria and voltage stability margin, in special, are treated as soft constraints. From mathematical points of view, reactive power market can be expressed as a nonlinear optimization problem. Thus PSO, as a powerful heuristic algorithm, is implemented to find equilibrium point of the reactive power market. Reactive power market is simulated over the IEEE30 bus system and obtained results are compared with another evolutionary programming such as genetic algorithm (GA) in terms of quantity and precision. Results show that the PSO has a good potential to converge to better feasible solution in less iteration and it can be successfully used for reactive power optimization in restructured environments.
کلیدواژه ها:
نویسندگان
Mozafari
Dept. of Electrical Engineering, Sharif University of Technology, Tehran, Iran و Niroo Research Institute, Tehran, Iran
Amraee
Dept. of Electrical Engineering, Sharif University of Technology, Tehran, Iran و Niroo Research Institute, Tehran, Iran
Ranjbar
Dept. of Electrical Engineering, Sharif University of Technology, Tehran, Iran و Niroo Research Institute, Tehran, Iran
Sadati
Dept. of Electrical Engineering, Sharif University of Technology, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :