Influence of Pattern of Missing Data on Performance of Imputation Methods: An Example from National Data on Drug Injection in Prisons

سال انتشار: 1392
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 102

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_HPM-1-1_011

تاریخ نمایه سازی: 16 مرداد 1403

چکیده مقاله:

Background Policy makers need models to be able to detect groups at high risk of HIV infection. Incomplete records and dirty data are frequently seen in national data sets. Presence of missing data challenges the practice of model development. Several studies suggested that performance of imputation methods is acceptable when missing rate is moderate. One of the issues which was of less concern, to be addressed here, is the role of the pattern of missing data.   Methods We used information of ۲۷۲۰ prisoners. Results derived from fitting regression model to whole data were served as gold standard. Missing data were then generated so that ۱۰%, ۲۰% and ۵۰% of data were lost. In scenario ۱, we generated missing values, at above rates, in one variable which was significant in gold model (age). In scenario ۲, a small proportion of each of independent variable was dropped out. Four imputation methods, under different Event Per Variable (EPV) values, were compared in terms of selection of important variables and parameter estimation.   Results In scenario ۲, bias in estimates was low and performances of all methods for handing missing data were similar. All methods at all missing rates were able to detect significance of age. In scenario ۱, biases in estimations were increased, in particular at ۵۰% missing rate. Here at EPVs of ۱۰ and ۵, imputation methods failed to capture effect of age.   Conclusion In scenario ۲, all imputation methods at all missing rates, were able to detect age as being significant. This was not the case in scenario ۱. Our results showed that performance of imputation methods depends on the pattern of missing data.

نویسندگان

Saiedeh Haji-Maghsoudi

Regional Knowledge Hub for HIV/AIDS Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran

Ali-Akbar Haghdoost

Regional Knowledge Hub for HIV/AIDS Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran

Azam Rastegari

Social Determinant of Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran

Mohammad Reza Baneshi

Research Center for Modeling in Healtth, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Shokoohi M, Baneshi MR, Haghdoost AA. Estimation of the Active ...
  • Prison and AIDS: UNAIDS point of view. [cited ۲۰۱۳ May). ...
  • Donders ART, van der Heijden GJMG, Stijnen T, Moons KGM. ...
  • Marshall A, Altman DG, Royston P, Holder RL. Comparison of ...
  • Knol MJ, Janssen KJM, Donders ART, Egberts ACG, Heerdink ER, ...
  • Barzi F, Woodward M. Imputations of missing values in practice: ...
  • Baneshi MR, Talei AR. Impact of imputation of missing data ...
  • Baneshi MR, Talei AR. Prevention of Disease Complications through Diagnostic ...
  • Vargas-Chanes D, Decker PA, Schroeder DR, Offord KP. An Introduction ...
  • Farhangfar A, Kurgan L, Dy J. Impact of imputation of ...
  • Horton NJ, Kleinman KP. Much Ado About Nothing: A Comparison ...
  • Langkamp DL, Lehman A, Lemeshow S. Techniques for handling missing ...
  • Marlin BM. Missing data problems in machine learning. Toronto: University ...
  • Klebanoff MA, Cole SR. Use of multiple imputation in the ...
  • Harel O, Zhou XH. Multiple imputation: review of theory, implementation ...
  • Chen Q, Wang S. Variable selection for multiply-imputed data with ...
  • Faris PD, Ghali WA, Brant R, Norris CM, Galbraith PD, ...
  • Van Buuren S, Groothuis-Oudshoorn K. MICE: Multivariate imputation by chained ...
  • JC W. Multiple Imputation For Missing Data: What Is It ...
  • White IR, Royston P, Wood AM. Multiple imputation using chained ...
  • Suraphee S, Raksmanee C, Busaba J, Chaisorn C, Nakornthai W. ...
  • Lin TH. A Comparison of multiple imputation with EM algorithm ...
  • N.Otwombe K, Galpin J. Weighting Method for Binary Longitudinal Data ...
  • Allison PD. Missing Data. Available at: http://www.statisticalhorizons.com/wp-content/uploads/۲۰۱۲/۰۱/Milsap-Allison.pdf ...
  • Baneshi MR, Talei AR. Does the Missing Data Imputation Method ...
  • Yuan YC, editor. Multiple imputation for missing data: concepts and ...
  • Bernaards CA, Farmer MM, Qi K, Dulai GS, Ganz PA, ...
  • Catellier DJ, Hannan PJ, Murray DM, Addy CL, Conway TL, ...
  • Cheng Y, Sherman SG, Srirat N, Vongchak T, Kawichai S, ...
  • Van Buuren S, Boshuizen HC, Knook DL. Multiple imputation of ...
  • Kristman VL, Manno M, Cote P. Methods to account for ...
  • Janssen KJM, Donders ART, Harrell FE, Vergouwe Y, Chen Q, ...
  • نمایش کامل مراجع