A Node-Centric Approach for Community Detection in Dynamic Networks

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 85

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JECEI-12-2_002

تاریخ نمایه سازی: 15 مرداد 1403

چکیده مقاله:

kground and Objectives: Nowadays, social networks are recognized as significant sources of information exchange. Consequently, many organizations have chosen social networks as essential tools for marketing and brand management. Communities are essential structures that can enhance the performance of social networks by grouping nodes and analyzing the information derived from them. This subject becomes more important with the increase in information volume and the complexity of relationships in networks. The goal of community identification is to find subgraphs that are densely connected internally but loosely connected externally.Methods: While community detection has mostly been studied in static networks in the past, this paper focuses on dynamic networks and the influence of central nodes in forming communities. In the proposed algorithm, the network is captured through multiple snapshots. The initial snapshot calculates the influence of each node. Then, by selecting k nodes with higher influence, network communities are formed, and other nodes belong to the community with the most common edges. In the second step, after receiving the next snapshot, communities are updated. Then, k nodes with higher influence are selected, and their associated community is created if needed. If the previous community centers are not among the newly selected k nodes, the community is dissolved, and the nodes within it belong to other communities.Results: Based on the results obtained, the proposed algorithm has managed to achieve better results in most cases compared to the compared algorithms, especially in terms of modularity metrics. The reason behind this success could be attributed to the utilization of influential nodes in community formation.Conclusion: Drawing from the outcomes attained, the suggested algorithm has effectively outperformed the contrasted algorithms in a majority of instances, particularly concerning metrics related to modularity. This accomplishment can potentially be ascribed to the incorporation of influential nodes during the process of community formation.

نویسندگان

M. Sabzekar

Department of Computer Engineering, Birjand University of Technology, Birjand, Iran.

S. Baradaran Nejad

Department of Computer Engineering, Birjand Branch, Islamic Azad University, Birjand, Iran.

M. Khazaeipoor

Department of Computer Engineering, Birjand Branch, Islamic Azad University, Birjand, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • B. Yang, D. Liu, J. Liu, “Discovering communities from social ...
  • S. Souravlas, S. D. Anastasiadou, T. Economides, S. Katsavounis, “Probabilistic ...
  • A. Abbasi, H. Chen, A. Salem, “Sentiment analysis in multiple ...
  • R. K. Bakshi, N. Kaur, R. Kaur, G. Kaur, “Opinion ...
  • T. Ma, Q. Liu, J. Cao, Y. Tian, A. Al-Dhelaan, ...
  • N. Chen, Y. Liu, J. Cheng, Q. Liu, “A novel ...
  • Y. Niu, D. Kong, L. Liu, R. Wen, J. Xiao, ...
  • A. Reihanian, M. R. Feizi-Derakhshi, H. S. Aghdasi, “An enhanced ...
  • P. Agarwal, R. Verma, A. Agarwal, T. Chakraborty, “DyPerm: Maximizing ...
  • X. Zeng, W. Wang, C. Chen, G. G. Yen, “A ...
  • S. Ahajjam, M. El Haddad, H. Badir, “A new scalable ...
  • K. Dasgupta et al., “Social ties and their relevance to ...
  • M. A. Al-Garadi et al., “Analysis of online social network ...
  • Y. Zhao, “A survey on theoretical advances of community detection ...
  • S. Bahadori, H. Zare, P. Moradi, “PODCD: Probabilistic overlapping dynamic ...
  • N. Chen, B. Hu, Y. Rui, “Dynamic network community detection ...
  • B. S. Khan, M. A. Niazi, “Network community detection: A ...
  • R. Cazabet, G. Rossetti, F. Amblard, “Dynamic community detection,” In: ...
  • G. Rossetti, R. Cazabet, “Community discovery in dynamic networks: a ...
  • S. Souravlas, S. Anastasiadou, S. Katsavounis, “A survey on the ...
  • D. Zhuang, J. M. Chang, M. Li, “DynaMo: Dynamic community ...
  • M. A. Javed, M. S. Younis, S. Latif, J. Qadir, ...
  • J. Scripps, “Discovering influential nodes in social networks through community ...
  • J. Dai et al., “Identifying influential nodes in complex networks ...
  • X. K. Zhang, J. Ren, C. Song, J. Jia, Q. ...
  • C. Li et al., “NANI: an efficient community detection algorithm ...
  • M. Cordeiro, R. P. Sarmento, J. Gama, “Dynamic community detection ...
  • W. Li, X. Zhou, C. Yang, Y. Fan, Z. Wang, ...
  • Q. Ni, J. Guo, W. Wu H. Wang, “Influence-Based community ...
  • H. Long, X. Li, X. Liu, X. et al., “BBTA: ...
  • S. A. Seyedi, A. Lotfi, P. Moradi, N. N. Qader, ...
  • F. Liu, J. Wu, C. Zhou, J. Yang, “Evolutionary community ...
  • X. Su, J. Cheng, H. Yang, M. Leng, W. Zhang, ...
  • نمایش کامل مراجع