Society Deciling Process: A Socio-inspired Meta-heuristic Algorithm
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 88
فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JECEI-12-2_019
تاریخ نمایه سازی: 15 مرداد 1403
چکیده مقاله:
kground and Objectives: The development of effective meta-heuristic algorithms is crucial for solving complex optimization problems. This paper introduces the Society Deciling Process (SDP), a novel socio-inspired meta-heuristic algorithm that simulates the social categorization into deciles based on metrics such as income, occupation, and education. The objective of this research is to introduce the SDP algorithm and evaluate its performance in terms of convergence speed and hit rate, comparing it with seven well-established meta-heuristic algorithms to highlight its potential in optimization tasks.Methods: The SDP algorithm's efficacy was evaluated using a comprehensive set of ۱۴ general test functions, including benchmarks from the CEC ۲۰۱۹ and CEC ۲۰۲۲ competitions. The performance of SDP was compared against seven established meta-heuristic algorithms: Artificial Hummingbird Algorithm (AHA), Dwarf Mongoose Optimization algorithm (DMO), Reptile Search Algorithm (RSA), Snake Optimizer (SO), Prairie Dog Optimization (PDO), Fick’s Law Optimization (FLA), and Gazelle Optimization Algorithm (GOA). Statistical analysis was conducted using Friedman's rank and Wilcoxon signed-rank tests to assess the relative performance in terms of exploration, exploitation capabilities, and proximity to the optimum solution.Results: The results demonstrated that the SDP algorithm outperforms its counterparts in terms of convergence speed and hit rate across the selected test functions. In statistical tests, SDP showed significantly better performance in exploration and exploitation, leading to a higher proximity to the optimum solution compared to the other algorithms. Furthermore, when applied to five complex engineering design problems, the SDP algorithm exhibited superior performance, outmatching the state-of-the-art algorithms in terms of effectiveness and efficiency.Conclusion: The Society Deciling Process (SDP) algorithm introduces a novel and effective approach to optimization, inspired by societal structure dynamics. Its superior performance in convergence speed, exploration and exploitation capabilities, and application to complex engineering problems establishes SDP as a promising meta-heuristic algorithm. This research not only demonstrates the potential of socio-inspired algorithms in optimization tasks but also opens avenues for further enhancements in meta-heuristic algorithm designs.
کلیدواژه ها:
نویسندگان
E. Pira
Faculty of Information Technology and Computer Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran.
Alireza Rouhi
Faculty of Information Technology and Computer Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :