Society Deciling Process: A Socio-inspired Meta-heuristic Algorithm

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 88

فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JECEI-12-2_019

تاریخ نمایه سازی: 15 مرداد 1403

چکیده مقاله:

kground and Objectives: The development of effective meta-heuristic algorithms is crucial for solving complex optimization problems. This paper introduces the Society Deciling Process (SDP), a novel socio-inspired meta-heuristic algorithm that simulates the social categorization into deciles based on metrics such as income, occupation, and education. The objective of this research is to introduce the SDP algorithm and evaluate its performance in terms of convergence speed and hit rate, comparing it with seven well-established meta-heuristic algorithms to highlight its potential in optimization tasks.Methods: The SDP algorithm's efficacy was evaluated using a comprehensive set of ۱۴ general test functions, including benchmarks from the CEC ۲۰۱۹ and CEC ۲۰۲۲ competitions. The performance of SDP was compared against seven established meta-heuristic algorithms: Artificial Hummingbird Algorithm (AHA), Dwarf Mongoose Optimization algorithm (DMO), Reptile Search Algorithm (RSA), Snake Optimizer (SO), Prairie Dog Optimization (PDO), Fick’s Law Optimization (FLA), and Gazelle Optimization Algorithm (GOA). Statistical analysis was conducted using Friedman's rank and Wilcoxon signed-rank tests to assess the relative performance in terms of exploration, exploitation capabilities, and proximity to the optimum solution.Results: The results demonstrated that the SDP algorithm outperforms its counterparts in terms of convergence speed and hit rate across the selected test functions. In statistical tests, SDP showed significantly better performance in exploration and exploitation, leading to a higher proximity to the optimum solution compared to the other algorithms. Furthermore, when applied to five complex engineering design problems, the SDP algorithm exhibited superior performance, outmatching the state-of-the-art algorithms in terms of effectiveness and efficiency.Conclusion: The Society Deciling Process (SDP) algorithm introduces a novel and effective approach to optimization, inspired by societal structure dynamics. Its superior performance in convergence speed, exploration and exploitation capabilities, and application to complex engineering problems establishes SDP as a promising meta-heuristic algorithm. This research not only demonstrates the potential of socio-inspired algorithms in optimization tasks but also opens avenues for further enhancements in meta-heuristic algorithm designs.

نویسندگان

E. Pira

Faculty of Information Technology and Computer Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran.

Alireza Rouhi

Faculty of Information Technology and Computer Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • F. A. Hashim, E. H. Houssein, K. Hussain, M. S. ...
  • E. Pira, "City councils evolution: a socio-inspired metaheuristic optimization algorithm," ...
  • W. Zhao, L. Wang, S. Mirjalili, "Artificial hummingbird algorithm: A ...
  • M. Abdel-Basset, L. Abdel-Fatah, A. K. Sangaiah, "Metaheuristic algorithms: A ...
  • I. Boussaïd, J. Lepagnot, P. Siarry, "A survey on optimization ...
  • J. H. Holland, "Genetic algorithms," Sci. Am., ۲۶۷(۱): ۶۶-۷۳, ۱۹۹۲ ...
  • J. R. Koza, "Evolution of subsumption using genetic programming," in ...
  • T. M. Shami, D. Grace, A. Burr, P. D. Mitchell, ...
  • P. D. Kusuma, F. C. Hasibuan, "Attack-Leave optimizer: A new ...
  • S. Kirkpatrick, C. D. Gelatt Jr, M. P. Vecchi, "Optimization ...
  • M. Azizi, U. Aickelin, H. A. Khorshidi, M. Baghalzadeh Shishehgarkhaneh, ...
  • H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi, "Water cycle ...
  • M. Abdel-Basset, R. Mohamed, M. Jameel, M. Abouhawwash, "Nutcracker optimizer: ...
  • M. Kaveh, M. S. Mesgari, B. Saeidian, "Orchard Algorithm (OA): ...
  • P. D. Kusuma, F. C. Hasibuan, "Swarm magnetic optimizer: A ...
  • B. Nouhi, N. Darabi, P. Sareh, H. Bayazidi, F. Darabi, ...
  • F. A. Hashim, R. R. Mostafa, A. G. Hussien, S. ...
  • F. Rezaei, H. R. Safavi, M. Abd Elaziz, S. Mirjalili, ...
  • M. Monemizadeh, S. R. Samareh Hashemi, M. Sheikh-Hosseini, H. Fehri, ...
  • R. Eberhart, J. Kennedy, "A new optimizer using particle swarm ...
  • F. A. Hashim, A. G. Hussien, "Snake optimizer: A novel ...
  • A. E. Ezugwu, J. O. Agushaka, L. Abualigah, S. Mirjalili, ...
  • L. Abualigah, D. Yousri, M. Abd Elaziz, A. A. Ewees, ...
  • D. Połap, M. Woźniak, "Red fox optimization algorithm," Expert Syst. ...
  • L. Abualigah, M. Abd Elaziz, P. Sumari, Z. W. Geem, ...
  • J. O. Agushaka, A. E. Ezugwu, L. Abualigah, "Gazelle optimization ...
  • J. Xue, B. Shen, "Dung beetle optimizer: A new meta-heuristic ...
  • H. Mohammed, T. Rashid, "FOX: a FOX-inspired optimization algorithm," Appl. ...
  • H. T. Sadeeq, A. M. Abdulazeez, "Giant trevally optimizer (GTO): ...
  • B. Abdollahzadeh, F. S. Gharehchopogh, N. Khodadadi, S. Mirjalili, "Mountain ...
  • J. O. Agushaka, A. E. Ezugwu, L. Abualigah, "Dwarf mongoose ...
  • M. H. Amiri, N. Mehrabi Hashjin, M. Montazeri, S. Mirjalili, ...
  • J. Bai, H. Nguyen-Xuan, E. Atroshchenko, G. Kosec, L. Wang, ...
  • E. S. M. El-kenawy, N. Khodadadi, S. Mirjalili, A. A. ...
  • G. Hu, Y. Guo, G. Wei, L. Abualigah, "Genghis Khan ...
  • S. Safiri, A. Nikoofard, "Ladybug Beetle optimization algorithm: Application for ...
  • H. Jia, H. Rao, C. Wen, S. Mirjalili, "Crayfish optimization ...
  • S. Satapathy, A. Naik, "Social group optimization (SGO): A new ...
  • E. Pira, "City councils evolution: a socio-inspired metaheuristic optimization algorithm," ...
  • R. V. Rao, V. J. Savsani, D. Vakharia, "Teaching–learning-based optimization: ...
  • A. Borji, "A new global optimization algorithm inspired by parliamentary ...
  • T. T. Huan, A. J. Kulkarni, J. Kanesan, C. J. ...
  • V. Sahargahi, V. Majidnezhad, S. T. Afshord, Y. Jafari, "An ...
  • A. S. Shastri, A. Jagetia, A. Sehgal, M. Patel, A. ...
  • H. Emami, "Seasons optimization algorithm," Eng. Comput., ۳۸: ۱۸۴۵-۱۸۶۵, ۲۰۲۰ ...
  • D. H. Wolpert, W. G. Macready, "No free lunch theorems ...
  • A. Kaveh, T. Bakhshpoori, "Water evaporation optimization: a novel physically ...
  • M. Friedman, "A comparison of alternative tests of significance for ...
  • R. F. Woolson, "Wilcoxon signed‐rank test," Wiley Encyclopedia of Clinical ...
  • G. Hu, J. Zhong, B. Du, G. Wei, "An enhanced ...
  • A. H. Gandomi, X. S. Yang, A. H. Alavi, S. ...
  • T. Ray, K. M. Liew, "Society and civilization: An optimization ...
  • H. Liu, Z. Cai, Y. Wang, "Hybridizing particle swarm optimization ...
  • L. Wang, L. p. Li, "An effective differential evolution with ...
  • M. Zhang, W. Luo, X. Wang, "Differential evolution with dynamic ...
  • Y. Wang, Z. Cai, Y. Zhou, Z. Fan, "Constrained optimization ...
  • E. Mezura-Montes, C. C. Coello, J. Velázquez-Reyes, "Increasing successful offspring ...
  • D. Karaboga, B. Basturk, "Artificial bee colony (ABC) optimization algorithm ...
  • C. A. C. Coello, "Use of a self-adaptive penalty approach ...
  • C. A. C. Coello, E. M. Montes, "Constraint-handling in genetic ...
  • L. dos Santos Coelho, "Gaussian quantum-behaved particle swarm optimization approaches ...
  • C. A. Coello Coello, R. L. Becerra, "Efficient evolutionary optimization ...
  • Q. He, L. Wang, "An effective co-evolutionary particle swarm optimization ...
  • Q. He, L. Wang, "A hybrid particle swarm optimization with ...
  • J. Lampinen, "A constraint handling approach for the differential evolution ...
  • R. Rao, "Jaya: A simple and new optimization algorithm for ...
  • S. Mirjalili, S. M. Mirjalili, A. Hatamlou, "Multi-verse optimizer: A ...
  • G. I. Sayed, A. Darwish, A. E. Hassanien, "A new ...
  • A. Kaveh, A. Dadras, "A novel meta-heuristic optimization algorithm: thermal ...
  • F. Z. Huang, L. Wang, Q. He, "An effective co-evolutionary ...
  • S. Korkmaz, N. B. H. Ali, I. F. Smith, "Configuration ...
  • نمایش کامل مراجع