Financial timeseries prediction by a hybrid model of chaos theory, multi-layer perceptron and metaheuristic algorithm

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 58

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-16-2_017

تاریخ نمایه سازی: 14 مرداد 1403

چکیده مقاله:

Many researchers proved that hybrid models have better results in comparison with independent models. A combination of different methods could enhance the accuracy of time series prediction. Hence, this research used the hybrid of three methods of chaos theory, multi-layer perceptron and metaheuristic algorithm to increase the power of the model forecasting. Artificial neural networks have properly considered complex nonlinear relations and are good comprehensive approximators. Multi-objective evolutionary algorithms such as multi-objective particle swarm optimization are good at solving multi-objective optimization issues. This algorithm organized the combination of parent and children populations by elitist strategy, decreased the messy comparing factors to improve the solution variety and avoided to use of niche factors. Chaos theory controls the complexities of stochastic systems. So, this research offers Tehran Stock Exchange Index (TSEI) prediction by a hybrid model of chaos theory, multi-layer perceptron and metaheuristic algorithm. The results show that in perceptron-based mode, RMSE measures are gradually increased in all intervals. The continuous decrease of RMSE shows that the perceptron-based model could show consistency with the whole data flow. This matter could offer a better learning and consistency process by perceptron-based models to predict stock prices, as this type of learning could apply more experiences for forecasting future behaviour in order to change the system content.

نویسندگان

Mostafa Sohouli Vahed

Department of Accounting, Yasuj Branch, Islamic Azad University, Yasuj, Iran

Mohammad Ali Aghaei

Department of Accounting, Tarbiat Modares University, Tehran, Iran

Fariborz Avazzadeh Fath

Department of Accounting, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran

Ali Pirzad

Department of Management, Yasuj Branch, Islamic Azad University, Yasuj, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • H. Akaike, A new look at the statistical model identification, ...
  • J.M. Bates and C.W.J. Granger, The combination of forecasts, Oper. ...
  • G. Box and G. Jenkins, Time Series Analysis: Forecasting and ...
  • L. Cao, Practical method for determining the minimum embedding dimension ...
  • C. Chatfield, Model uncertainty and forecast accuracy, J. Forecast. ۱۵ ...
  • R.T. Clemen, Combining forecasts: A review and annotated bibliography, Int. ...
  • A. Coello Coello, G.B. Lamont, and D.A. Van Veldhuisen, Evolutionary ...
  • K. Deb, A. Pratap, S. Agarwal and T.A.M.T. Meyarivan, A ...
  • I. Ginzburg and D. Horn, Combined neural networks for time ...
  • S. Makridakis, A. Andersen, R. Carbone, R. Fildes, M. Hibon, ...
  • S. Makridakis, S. Wheelwright, and R. Hyndman, Forecasting: Methods and ...
  • T. Mitsa, Temporal Data Mining, Chapman & Hall/ CRC Data ...
  • A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, and C.A. Coello Coello, ...
  • N.H. Packard, J.P. Crutchfield, J.D. Farmer, and R.S. Shaw, Geometry ...
  • H. Poincare, Sur le probl`eme des trois corps et les ...
  • D.J. Reid, Combining three estimates of gross domestic product, Economica ...
  • N. Srinivas and K. Deb, Multiobjective optimization using nondominated sorting ...
  • J.L. Ticknor, A Bayesian regularized artificial neural network for stock ...
  • G. Zhang, B. Patuwo, and M.Y. Hu, Forecasting with artificial ...
  • نمایش کامل مراجع