Comparative Study of Frequency Recognition Techniques for Steady-State Visual Evoked Potentials According to the Frequency Harmonics and Stimulus Number

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 85

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JBPE-14-4_005

تاریخ نمایه سازی: 14 مرداد 1403

چکیده مقاله:

Background: A key challenge in steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems is to effectively recognize frequencies within a short time window. To address this challenge, the specific characteristics of the data are needed to select the frequency recognition method. These characteristics include factors, such as the number of stimulation targets and the presence of harmonic frequencies, resulting in optimizing the performance and accuracy of SSVEP-based BCI systems.Objective: The current study aimed to examine the effect of data characteristics on frequency recognition accuracy.Material and Methods: In this analytical study, five commonly used frequency recognition methods were examined, used to various datasets containing different numbers of frequencies, including sub-data with and without frequency harmonics.Results: The increase in the number of frequencies in the Multivariate Linear Regression (MLR) method has led to a decrease in frequency recognition accuracy by ۹%. Additionally, the presence of harmonic frequencies resulted in an ۸% decrease in accuracy for the MLR method. Conclusion: Frequency recognition using the MLR method reduces the effect of the number of different frequencies and harmonics of the stimulation frequencies on the frequency recognition accuracy.

نویسندگان

Maedeh Azadi Moghadam

Department of Biotechnology, Faculty of New Science and Technologies, Semnan University, Semnan, Iran

Ali Maleki

Department of Biomedical Engineering, Semnan University, Semnan, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Chadaga K, Prabhu S, Sampathila N, Nireshwalya S, Katta SS, ...
  • Azadimoghadam M, Maleki A. Fatigue Assessment using Frequency Features in ...
  • Pronina MV, Ponomarev VA, Poliakov YI, Martins-Mourao A, Plotnikova IV, ...
  • Amini MM, Shalchyan V. Designing a motion-onset visual evoked potential-based ...
  • Friðriksdóttir D, Andriyash Y. Exploring Attentional Neural Differences During an ...
  • Sadeghi S, Maleki A. Recent Advances in Hybrid Brain-Computer Interface ...
  • Azadi Moghadam M, Maleki A. Fatigue factors and fatigue indices ...
  • Ziafati A, Maleki A. Genetic algorithm based ensemble system using ...
  • Ojha MK, Tiwari P, Choubey DK, Gupta D. Detection of ...
  • Vahid F, Behboodi M, Mahnam A. Bichromatic visual stimulus with ...
  • Tong C, Wang H, Wang Y. Relation of canonical correlation ...
  • Li H, Xu G, Li Z, Zhang K, Zheng X, ...
  • Nakanishi M, Wang Y, Chen X, Wang YT, Gao X, ...
  • Jiao Y, Zhang Y, Jin J, Wang X. Multilayer correlation ...
  • Zhang Y, Zhou G, Jin J, Wang X, Cichocki A. ...
  • Ziafati A, Maleki A. Fuzzy ensemble system for SSVEP stimulation ...
  • Neghabi M, Marateb HR, Mahnam A. Comparing Steady-State Visually Evoked ...
  • Zhang R, Xu Z, Zhang L, Cao L, Hu Y, ...
  • Wang H, Zhang Y, Waytowich NR, Krusienski DJ, Zhou G, ...
  • Sadeghi S, Maleki A. Character encoding based on occurrence probability ...
  • Sadeghi S, Maleki A. Adaptive canonical correlation analysis for harmonic ...
  • Zhang Y, Zhou G, Jin J, Wang M, Wang X, ...
  • Da Cruz JN, Wan F, Wong CM, Cao T. Adaptive ...
  • Chen X, Wang Y, Zhang S, Xu S, Gao X. ...
  • Floriano A, F Diez P, Freire Bastos-Filho T. Evaluating the ...
  • Luo TJ. A comparative survey of SSVEP recognition algorithms based ...
  • Wong CM, Wang B, Wang Z, Lao KF, Rosa A, ...
  • Zhang X, Qiu S, Zhang Y, Wang K, Wang Y, ...
  • Chen X, Wang Y, Gao S, Jung TP, Gao X. ...
  • Huang J, Yang P, Xiong B, Wan B, Su K, ...
  • Hong J, Qin X. Signal processing algorithms for SSVEP-based brain ...
  • Vialatte FB, Maurice M, Dauwels J, Cichocki A. Steady-state visually ...
  • Müller-Putz GR, Pfurtscheller G. Control of an electrical prosthesis with ...
  • Diez PF, Mut VA, Avila Perona EM, Laciar Leber E. ...
  • نمایش کامل مراجع