Automatic Metapath Generating In Heterogeneous Graphs for Representation Learning
محل انتشار: دهمین کنفرانس بین المللی وب پژوهی
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 111
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IRANWEB10_005
تاریخ نمایه سازی: 14 مرداد 1403
چکیده مقاله:
In this article, the problem of learning representation in heterogeneous graphs is investigated. Due to the presence of different types of nodes and edges in this type of graphs, there are unique challenges that limit the possibility of using conventional graph representation techniques. The way of random walk in this type of graphs is different and they need a walking scheme or metapath to find the path. Specifying this scheme is one of the challenges of learning representation in heterogeneous graphs. In this article, an algorithm has been introduced that finds all possible metapath schema by taking an heterogeneous graph and finds the best metapath scheme by specifying the correct schema and checking them. Various experiments show that with a small sampling of the network in the form of short length, the most suitable scheme can be found automatically and it is shown that by changing the sampling size, the selected scheme is the best scheme and in terms of time only Runs in ۰.۰۰۷% of the time using long random walks.
کلیدواژه ها:
نویسندگان
Azadeh Beiranvand
PhD candidate, Faculty of Electrical and Computer Engineering, University of Kashan, Kashan, Iran
Maryam Nadali
Master of Science student, Faculty of Electrical and Computer Engineering, University of Kashan, Kashan, Iran
Arefeh Takhtkesh
Master of Science student, Faculty of Electrical and Computer Engineering, University of Kashan, Kashan, Iran
Mehdi Vahidipour
Assistant Professor, Faculty of Electrical and Computer Engineering, University of Kashan, Kashan, Iran