Use the generalized maximum Tsallis entropy estimator to fit the regression model to the data that have collinearityproblem
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 164
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AITIM01_051
تاریخ نمایه سازی: 14 مرداد 1403
چکیده مقاله:
Sometimes a regression dataset may present us with limitations. In otherwords, they do not have a series of conditions that must have be met. In these situations,the estimates do not have enough accuracy and their variance is very large and the OLSestimator performs poorly. On the other hand. because of the non-existence of the underlyingassumptions of regression, The method of OLS cannot be used. The generalizedmaximum entropy method does not require establishing any underlying hypothesis. Tsallisentropy is nonadditive, in this paper Generalized Maximum Tsallis Entropy estimatoris introduced and through a numerical example, an application of the new estimator isillustrated. Using GMET۲, a regression model is estimated and three estimators (GME,OLS, GMET۲) are compared. Keywords: Tsallis Entropy, Generalized Maximum TsallisEntropy, Multicollinearity, Regression.
نویسندگان
M Sanei Tabass
Department of Statistics School of Mathematics, Statistics and Computer Sciences University of Sistan and BaluchestanZahedan-IRAN