The probability that the commutator equation [x,y]=g has solution in a finite group

سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 170

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JART-7-2_005

تاریخ نمایه سازی: 31 تیر 1403

چکیده مقاله:

Let G be a finite group. For g\in G, an ordered pair (x_۱,y_۱)\in G\times G is called a solution of the commutator equation [x,y]=g if [x_۱,y_۱]=g. We consider \rho_g(G)=\{(x,y)| x,y\in G, [x,y]=g\}, then the probability that the commutator equation [x,y]=g has solution in a finite group G, written P_g(G), is equal to \frac{|\rho_{g}(G)|}{|G|^۲}. In this paper, we present two methods for the computing P_g(G). First by GAP, we give certain explicit formulas for P_g(A_n) and P_g(S_n). Also we note that this method can be applied to any group of small order. Then by using the numerical solutions of the equation xy-zu \equiv t (mod~n), we derive formulas for calculating the probability of \rho_g(G) where G is a two generated group of nilpotency class ۲.

نویسندگان

M. Hashemi

Faculty of mathematical sciences, University of Guilan.

M. Pirzadeh

Faculty of Mathematical Sciences, University of Guilan

S. A. Gorjian

University Compos ۲, University of Guilan