Neonate facial gender classification using PCA and fuzzy clustering

سال انتشار: 1389
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 872

فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICBME17_100

تاریخ نمایه سازی: 9 تیر 1392

چکیده مقاله:

This paper considers the problem of neonate gender classification using frontal facial image. Determining sex ofneonates using facial image is a challenging issue even for human observers. We propose a new gender classification method for neonate facial image by employing Principal Component Analysis (PCA) and Fuzzy C-means Algorithm (FCM). In this approach, PCA is used to extract suitable features with reduced dimensional space. These features are then used to assign the image to an appropriate class, hence recognizing it as belongingto a boy or a girl. This technique can be used to assist physicians in recognizing intersex neonates. Compared to the clinical approaches, such as hormonal, genetic and radiological methods, the proposed approach is fast and inexpensive. In an experiment performed on 48 neonate facial images, the naive human observers could classify the gender with 58.33% accuracy while the proposed method outperformed with 91.66% accuracy.

نویسندگان

Hamid Hasassnpour

School of Computer Engineering Shahrood University of Technology Shahrood, Iran

Hossein Dehghani

School of Computer Engineering Shahrood University of Technology Shahrood, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. Diamond, , K. Sigmundson, _ _ M ANA GEMENT ...
  • http ://www. itpeople. org/pdf/intersex 1.pdf ...
  • T. Kanade, :Computer Recognition of Human Faces", 1977, Basel and ...
  • E. Makinen, R. Raisamo, _ experimental comparison of gender classification ...
  • _ _ _ _ and ...
  • H. Abdi, D. Valentin, B. Edelma, A.J. O Toole, _ ...
  • A. Golomb, D.T. Lawerence, T.J. Sejnowski, :SEXNET: A neural network ...
  • G.W. Cottrell, J. Metclfe, 'Empath: Face, emotion and gender recognition ...
  • _ _ _ _ pp. 707-711, (2002). ...
  • 1 -4244- 7484-4/1 0)/826.00 C2010 IEEE ...
  • Proceedings of the 17th Iranian Coference of Bionedicl Engineering (ICBME2010), ...
  • T. Wilhelm, H.J. Bohme, and H.M. Gross, , , Classification ...
  • _ _ _ _ Recognition (FGR 04), May, pp. 201-206, ...
  • N. Kambhatla, T. K. Leen, :Fast Non-Linear Dimension Reduction", IEEE ...
  • M. Turk and A. Pentland, "Eigenfaces for recognition;, Journal of ...
  • J.C. Bezdek, "Pattern Recognition with Fuzzy Objective Function Algorithm; . ...
  • D. Li, H. Gu, L. Zhang, "A fuzzy c-means clustering ...
  • http://www. sharp .com/baby/ ...
  • B. Wu, H. Ai, C. Huang, " LUT-based Adaboost for ...
  • 1 -4244- 7484-4/1 0)/826.00 C2010 IEEE ...
  • _ _ _ _ _ Recognition, 2006. ...
  • A.M. Burton, _ Bruce, N. Dench, _ the difference between ...
  • _ S _ _ _ _ _ _ _ _ ...
  • Z. Sun, G. Bebis, X. Yuan, S.J. Louis, :Genetic Feature ...
  • نمایش کامل مراجع