An improved fuzzy time series forecasting model based on hesitant fuzzy sets

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 171

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JFEA-5-2_002

تاریخ نمایه سازی: 28 تیر 1403

چکیده مقاله:

Fuzzy Time Series Forecasting (TSF) is an approach for dealing with uncertainty in time series data that uses fuzzy logic. The Hesitant Fuzzy Set (HFS) theory better emphasizes the chances of capturing fuzziness and uncertainty due to randomness than the classic fuzzy set theory. This study aims to improve the previously identified hesitant fuzzy TSF models by including various degrees of hesitation to improve forecasting performance. The goal is to deal with the issue of identifying a common membership grade when several fuzzification methods are available to fuzzify time series data. The proposed method utilizes trapezoidal and bell-shaped fuzzy membership functions for constructing HFSs. Ahesitant fuzzy weighted averaging operator is then applied to the Hesitant Fuzzy Elements (HEFs) to create fuzzy logical relations. The suggested technique is employed to forecast enrollment in the University of Alabama and Cancer Incidence Rates (CIRs) in India. The efficiency of the proposed forecasting approach is determined by rigorously comparing it to various computational fuzzy TSF methods in terms of error measurements like Root Mean Square Error (RMSE), Average Forecasting Error (AFE), and Mean Absolute Deviation (Mad). The validity of the proposed forecasting model is verified by using correlation coefficients, coefficients of determination, Tracking Signals (TSs), and Performance Parameters (PPs). The significance of improved accuracy in forecasted results is also confirmed using the two-tailed t-test. The study results revealed that the enhanced hesitant Fuzzy Time Series (FTS) model is more effective and accurate in forecasting the university enrolment of Alabama and the CIRs of India.

کلیدواژه ها:

Fuzzy time series ، Hesitant fuzzy sets ، Trapezoidal and bell-shaped membership function ، Cancer Incidence rates-India

نویسندگان

Lubna Shafi

Department of Mathematics and Actuarial Science, B.S. Abdur Rahman Crescent Institute of Science & Technology, Chennai, India.

Shilpi Jain

Poornima College of Engineering, University of Rajasthan, Jaipur, Rajasthan, India.

Praveen Agarwal

Department of Mathematics, Anand International College of Engineering, Jaipur, ۳۰۳۰۱۲, Rajasthan, India.

Pervaiz Iqbal

Department of Mathematics & Actuarial Science, B.S. Abdur Rahman Crescent Institute of Science & Technology, Chennai, India.

Aadil Rashid Sheergojri

Department of Mathematics & Actuarial Science, B.S. Abdur Rahman Crescent Institute of Science & Technology, Chennai, India.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Uslu, V. R., Bas, E., Yolcu, U., & Egrioglu, E. ...
  • Jafarian-Namin, S., Shishebori, D., & Goli, A. (۲۰۲۴). Analyzing and ...
  • Peykani, P., Eshghi, F., Jandaghian, A., Farrokhi-Asl, H., & Tondnevis, ...
  • Abbaspour Ghadim Bonab, A. (۲۰۲۲). A comparative study of demand ...
  • Nasiri, H., Taghizadeh, K., Amiri, B., & Shaghaghi Shahri, V. ...
  • Song, Q., & Chissom, B. S. (۱۹۹۳). Fuzzy time series ...
  • Alyousifi, Y., Othman, M., & Almohammedi, A. A. (۲۰۲۱). A ...
  • Song, Q., & Chissom, B. S. (۱۹۹۴). Forecasting enrollments with ...
  • Chen, S. M. (۱۹۹۶). Forecasting enrollments based on fuzzy time ...
  • Cheng, S. H., Chen, S. M., & Jian, W. S. ...
  • Alemu, M. N. (۲۰۱۸). A fuzzy model for chaotic time ...
  • Cai, Q., Zhang, D., Zheng, W., & Leung, S. C. ...
  • Singh, P., & Dhiman, G. (۲۰۱۸). A hybrid fuzzy time ...
  • Mohanta, K. K., & Sharanappa, D. S. (۲۰۲۳). Neutrosophic data ...
  • Kumar, R., Edalatpanah, S. A., Jha, S., & Singh, R. ...
  • Edalatpanah, S. A., Hassani, F. S., Smarandache, F., Sorourkhah, A., ...
  • Singh, P., & Borah, B. (۲۰۱۳). An efficient time series ...
  • Guo, H., Pedrycz, W., & Liu, X. (۲۰۱۹). Fuzzy time ...
  • Bas, E., Yolcu, U., & Egrioglu, E. (۲۰۲۱). Intuitionistic fuzzy ...
  • Kiptum, C. K., Bouraima, M. B., Badi, I., Zonon, B. ...
  • Goli, A., Golmohammadi, A. M., & Edalatpanah, S. A. (۲۰۲۲). ...
  • Bisht, K., & Kumar, S. (۲۰۱۹). Hesitant fuzzy set based ...
  • Colombo, J. A., Akhter, T., Wanke, P., Azad, M. A. ...
  • Atanassov, K. T., & Atanassov, K. T. (۱۹۹۹). Intuitionistic fuzzy ...
  • Kumar, S., & Gangwar, S. S. (۲۰۱۵). Intuitionistic fuzzy time ...
  • Torra, V. (۲۰۱۰). Hesitant fuzzy sets. International journal of intelligent ...
  • Edalatpanah, S. A. (۲۰۲۲). Using hesitant fuzzy sets to solve ...
  • Bisht, K., & Kumar, S. (۲۰۱۶). Fuzzy time series forecasting ...
  • Bisht, K., Dhyani, M., & Kumar, S. (۲۰۱۷). An approach ...
  • Huarng, K. (۲۰۰۱). Effective lengths of intervals to improve forecasting ...
  • Huarng, K., & Yu, T. H. K. (۲۰۰۶). Ratio-based lengths ...
  • Egrioglu, E., Aladag, C. H., Yolcu, U., Uslu, V. R., ...
  • Pattanayak, R. M., Behera, H. S., & Panigrahi, S. (۲۰۲۱). ...
  • Gupta, K. K., & Kumar, S. (۲۰۱۹). Hesitant probabilistic fuzzy ...
  • Pattanayak, R. M., Behera, H. S., & Rath, R. K. ...
  • Panigrahi, S., & Behera, H. S. (۲۰۲۰). A study on ...
  • Pattanayak, R. M., Behera, H. S., & Panigrahi, S. (۲۰۱۹). ...
  • Zadeh, L. A. (۱۹۶۵). Fuzzy sets. Information and control, ۸(۳), ...
  • Anand, M. C. J., & Bharatraj, J. (۲۰۱۷). Theory of ...
  • Liu, H. T. (۲۰۰۷). An improved fuzzy time series forecasting ...
  • Sen, S., Patra, K., & Mondal, S. K. (۲۰۲۱). Similarity ...
  • Dutta, P., & Limboo, B. (۲۰۱۷). Bell-shaped fuzzy soft sets ...
  • Xia, M., & Xu, Z. (۲۰۱۱). Hesitant fuzzy information aggregation ...
  • Yolcu, U., Egrioglu, E., Uslu, V. R., Basaran, M. A., ...
  • Joshi, B. P., & Kumar, S. (۲۰۱۲). Intuitionistic fuzzy sets ...
  • Bisht, K., Joshi, D. K., & Kumar, S. (۲۰۱۸). Dual ...
  • Gautam, S. S., Abhishekh, & Singh, S. R. (۲۰۲۰). A ...
  • Pant, M., & Kumar, S. (۲۰۲۲). Fuzzy time series forecasting ...
  • Sathishkumar, K., Chaturvedi, M., Das, P., Stephen, S., & Mathur, ...
  • Shafi, L., Iqbal, P., & Khaliq, R. (۲۰۲۳). Cancer burden ...
  • Wu, X. X., & Chen, Z. (۱۹۹۶). Introduction of chaos ...
  • نمایش کامل مراجع