Mass diagnosis in mammopgraphy images using novel FTRD features
محل انتشار: هفدهمین کنفرانس مهندسی پزشکی ایران
سال انتشار: 1389
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,080
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICBME17_064
تاریخ نمایه سازی: 9 تیر 1392
چکیده مقاله:
In this paper, a novel group of features have been introduced for diagnosing the masses in mammography images. The goal is increasing the performance of CADx algorithms as well as decreasing computational complexity. The proposed features are proper descriptors of mass margin which are called Fourier Transform of Radial Distance (FTRD). The input ROI has been segmented manually by expert radiologists and subjected to some preprocessing stages. In order to extract the proposed features, the Radial Distance (RD) vectors of masseshave been extracted. In addition, the zero padding method has been utilized to equalize the length of the RD vectors. Then, the resulting vectors are transformed to the frequency domain. It is shown that the magnitude response of FTRD vectors can be appropriate descriptors of the mass margin. Furthermore, in order to make a trade-off between the computational complexity and performance of the overall system, several groups of FTRDfeatures with different lengths have been chosen and applied to an MLP classifier. Finally, the ROC curves have been plotted for each group of features and the performances have been evaluated. The most effective system yields an Az which is equal to 0.98. Moreover, the best achieved FPR is 5.56%.
کلیدواژه ها:
نویسندگان
Amir Tahmasbi
Department of Electrical Engineering, Iran University of Science and Technology (IUST) Tehran, Iran
Fatemeh Saki
Department of Electrical Engineering, Iran University of Science and Technology (IUST) Tehran, Iran
Shahriar B Shokouhi
Department of Electrical Engineering, Iran University of Science and Technology (IUST) Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :