Reliable Features for an ECG-based Biometric System
محل انتشار: هفدهمین کنفرانس مهندسی پزشکی ایران
سال انتشار: 1389
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,191
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICBME17_013
تاریخ نمایه سازی: 9 تیر 1392
چکیده مقاله:
Verification of subjects using their unique physiological features has recently attracted much attention todevelop secure biometric systems. One of the most reliable physiological features is electrocardiogram (ECG) waveform, which is the electrical reflection of the heart activity, and has a unique characteristic for each individual. In this paper, autoregressive (AR) coefficients along with mean of power spectral density (PSD) were used as reliable ECG features to enhance the performance of an ECG-based biometric system. To assess the effectiveness of the proposed combination, other features including autoregressive (AR) coefficients, Higuchidimension, Lyapunov exponent, and approximation entropy (ApEn) were exctracted from ECG Multi-layer-perceptron (MLP), probabilistic neural networks, and k-nearest neighbor (KNN) classifiers were used to classify the extracted features. In addition, simple combination of the features was considered for further improvement in verification rate. The achieved results (100% accuracy) showed the effectiveness of the combined features in terms of accuracy and robustness compared to the results produced by the former traditional methods.
کلیدواژه ها:
نویسندگان
Nahid Ghofrani
Dept. of Biomedical Eng, Azad University of Mashhad, Mashhad, Iran
Reza Bostani
CSE&IT Dept., Faculty of Electrical and Computer Engineering, Shiraz University Shiraz, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :