On a question concerning the Cohen's theorem
محل انتشار: مجله جبر و موضوعات مرتبط، دوره: 11، شماره: 1
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 123
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JART-11-1_005
تاریخ نمایه سازی: 21 تیر 1403
چکیده مقاله:
Let R be a commutative ring with identity, and let M be an R-module. The Cohen's theorem is the classic result that a ring is Noetherian if and only if its prime ideals are finitely generated. Parkash and Kour obtained a new version of Cohen's theorem for modules, which states that a finitely generated R-module M is Noetherian if and only if for every prime ideal p of R with Ann(M) \subseteq p, there exists a finitely generated submodule N of M such that pM \subseteq N \subseteq M(p), where M(p) = \{x \in M | sx \in pM \,\,\textit{for some} \,\, s \in R \backslash p\}. In this paper, we prove this result for some classes of modules.
کلیدواژه ها:
نویسندگان
S. S. Pourmortazavi
Department of Mathematics, Guilan University, Rasht, Iran
S. Keyvani
Department of Mathematics, Bandar Anzali Branch, Islamic Azad University, Bandar Anzali Branch, Iran