Some applications of k-regular sequences and arithmetic rank of an ideal with respect to modules
محل انتشار: مجله جبر و موضوعات مرتبط، دوره: 11، شماره: 2
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 182
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JART-11-2_002
تاریخ نمایه سازی: 21 تیر 1403
چکیده مقاله:
Let R be a commutative Noetherian ring with identity, I be an ideal of R, and M be an R-module. Let k\geqslant -۱ be an arbitrary integer. In this paper, we introduce the notions of \Rad_M(I) and \ara_M(I) as the radical and the arithmetic rank of I with respect to M, respectively. We show that the existence of some sort of regular sequences can be depended on \dim M/IM and so, we can get some information about local cohomology modules as well. Indeed, if \ara_M(I)=n\geq ۱ and {(\Supp_{R}(M/IM))}_{>k}=\emptyset (e.g., if \dim M/IM=k), then there exist n elements x_۱, ..., x_n in I which is a poor k-regular M-sequence and generate an ideal with the same radical as \Rad_M(I) and so H^i_I(M)\cong H^i_{(x_۱, ..., x_n)}(M) for all i\in \mathbb{N}_۰. As an application, we show that \ara_M(I) \leq \dim M+۱, which is a refinement of the inequality \ara_R(I) \leq \dim R+۱ for modules, attributed to Kronecker and Forster. Then, we prove \dim M-\dim M/IM \leq \cd(I, M) \leq \ara_M(I) \leq \dim M, if (R, \mathfrak{m}) is a local ring and IM \neq M.
کلیدواژه ها:
regular sequences ، k-regular sequences ، Local cohomology modules ، arithmetic rank of an ideal with respect to modules
نویسندگان
Kh. Ahmadi Amoli
Department of Mathematics, Payame Noor University, Tehran, Iran
Z. Habibi
Department of Mathematics, Payame Noor University, Tehran, Iran
R. Behboodi
Department of Mathematics, Payame Noor University, Tehran, Iran