Hydrodynamic simulation of spinning cone columns using artificial neural networks

سال انتشار: 1391
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,282

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

NCOGP02_353

تاریخ نمایه سازی: 23 خرداد 1392

چکیده مقاله:

In this research the effect of tray speed, pressure drop and cone spacing for spinning cone columns have been examined using artificial neural network. To obtain this objective, Radial BasisFunction (RBF) neural network structure and least mean squares (LMS) training algorithm has beenutilized. The findings of this study reveal that the predictions of this work are much accurate than those obtained from the existing empirical correlation. There also exists a good compatibility between the pressure drop values predicted from the present study and the experimental data in wet state. From the scheme adopted in this work, the spinning cone column capacity at different operating conditions could be estimated more accurately than the existing correlations.

کلیدواژه ها:

pressure drop ، neural networks ، Radial Basis Function (RBF) ، spinning cone column

نویسندگان

Behrouz Niazmand

Department of chemical engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran

Mostafa Taherian

Department of chemical engineering, Ferdowsi University, Mashhad, Iran

Hamed Shabani

Department of chemical engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • . Zivdar M, Langrish TAG, Prince RGH (2001) Int J ...
  • . Chau KW, Cheng CT (2002) Real-time prediction of water ...
  • . Rumelhart DE, Hinton E, Williams J (1986) Parallel distributed ...
  • . Makarytechev SV, Langrish TAG, Prince RGH (1998) Chem Engin ...
  • . Makarytechev SV, Langrish TAG, Prince RGH (2001) Chem Engin ...
  • . Makarytechev SV, Langrish TAG (2005) Chem Eng Comm 192:445 ...
  • . Makarytechev SV, Langrish TAG, Prince RGH (2004) Chem Engin ...
  • . Riley PC, Sykes SJ (2002) Industrial Applications of spinning ...
  • . N. Tikhonov, On solving incorrectly posed problems and method ...
  • . S. Haykin, Neural Networks: A Comprehen sive Foundation, 2nd ...
  • . T. Poggio, F. Girosi, Regularisation algorithms for learning that ...
  • . T. Poggio, F. Girosi, Networks for approximation and learning, ...
  • A. Shahsavand, A. Ahmadpour, Application of optimal RBF neural networks ...
  • N.P. Padhy, Artificial Intelligence and Intelligent Systems, Oxford University Press, ...
  • . M. Tim Jones, Artificial Intelligence A Systems Approach, Infinity ...
  • . Ham, F. and Kostanic, I., Principles of Neuro computing ...
  • . N _ Saghatoleslami , M.Amiri , J.Rohi Golkhatmi , ...
  • نمایش کامل مراجع