Hydrodynamic simulation of spinning cone columns using artificial neural networks
محل انتشار: دومین همایش ملی نفت ،گاز و پتروشیمی
سال انتشار: 1391
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,282
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NCOGP02_353
تاریخ نمایه سازی: 23 خرداد 1392
چکیده مقاله:
In this research the effect of tray speed, pressure drop and cone spacing for spinning cone columns have been examined using artificial neural network. To obtain this objective, Radial BasisFunction (RBF) neural network structure and least mean squares (LMS) training algorithm has beenutilized. The findings of this study reveal that the predictions of this work are much accurate than those obtained from the existing empirical correlation. There also exists a good compatibility between the pressure drop values predicted from the present study and the experimental data in wet state. From the scheme adopted in this work, the spinning cone column capacity at different operating conditions could be estimated more accurately than the existing correlations.
کلیدواژه ها:
نویسندگان
Behrouz Niazmand
Department of chemical engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran
Mostafa Taherian
Department of chemical engineering, Ferdowsi University, Mashhad, Iran
Hamed Shabani
Department of chemical engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :