New adapted spectral method for solving stochastic optimal control problem

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 143

فایل این مقاله در 28 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-15-11_001

تاریخ نمایه سازی: 17 تیر 1403

چکیده مقاله:

Optimal control theory is a branch of mathematics. It is developed to find optimal ways to control a dynamic system. In ۱۹۵۷, R.Bellman applied dynamic programming to solve optimal control of discrete-time systems. His procedure resulted in closed-loop,  generally nonlinear, and feedback schemes. Optimal control problems which will be tackled involve the minimization of a cost function subject to constraints on the state vector and the control. Lagrange multipliers provide a method of converting a constrained minimization problem into an unconstrained minimization problem of higher order. The necessary condition for optimality can be obtained as the solution of the unconstrained optimization problem of the Lagrange function and the bordered Hessian matrix is used for the second-derivative test. A spectral method for solving optimal control problems is presented. The method is based on Bernoulli polynomials approximation. By using the Bernoulli operational matrix of integration and the Lagrangian function, stochastic optimal control is transformed into an optimisation problem, where the unknown Bernoulli coefficients are determined by using Newton's iterative method. The convergence analysis of the proposed method is given. The simulation results based on the Monte-Carlo technique prove the performance of the proposed method. Some error estimations are provided and illustrative examples are also included to demonstrate the efficiency and applicability of the proposed method.

نویسندگان

Ikram Boukhelkhal

Mathematical Analysis and Applications Laboratory, Departement of Mathematics, Faculty of Mathematics and Informatics, Mohamed El Bachir El Ibrahimi university of Bordj Bou Arreridj, El Anasser, ۳۴۰۳۰, Algeria

Rebiha Zeghdane

Mathematical Analysis and Applications Laboratory, Departement of Mathematics, Faculty of Mathematics and Informatics, Mohamed El Bachir El Ibrahimi university of Bordj Bou Arreridj, El Anasser, ۳۴۰۳۰, Algeria

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. Annunziato and A. Borzi, Optimal control of probability density ...
  • M. Annunziato and A. Borzi, A Fokker-Planck control framework for ...
  • S. Bazm, Bernoulli polynomials for the numerical solution of some ...
  • R. Bellman, Dynamic programming and stochastic control processes, Inf. Control ...
  • A.H. Bhrawy, E. Tohidi, and F. Soleymani, A new Bernoulli ...
  • J.M. Bismut, Linear quadratic optimal stochastic control with random coefficients, ...
  • J.M. Bismut, Controle des Systemes Lineaires Quadratiques: Applications de l’integrale ...
  • Z. Chen, X. Feng, S. Liuand, and W. Zhang, Bang-bang ...
  • S. Chen and J. Yong, Stochastic linear quadratic optimal control ...
  • Y. Chen and Y. Zhu, Optimistic value model of indefinite ...
  • F.A. Costabile and F. Dell’Accio, Expansion over a rectangle of ...
  • L. Deng and Y. Zhu, An uncertain optimal control model ...
  • J.C. Doyle and B.A. Francis and A.R. Tannenbaum, Feedback Control ...
  • N. Du, J. Shi, and W. Liu, An effective gradient ...
  • R. Elliott, X. Li, and Y.H. Ni, Discrete time mean-field ...
  • J. Engwerda, LQ Dynamic Optimization and Differential Games, John Wiley ...
  • N. Ghaderi and M.H. Farahi, The numerical solution of nonlinear ...
  • R. Herzallah, Generalised probabilistic control design for uncertain stochastic control ...
  • S. Ji, S. Peng, Y. Peng, and X. Zhang, Solving ...
  • B. Kafash and A. Delavarkhalafi, Restarted state parameterization method for ...
  • M. Kohlmann and S. Tang, New developments in backward stochastic ...
  • M. Kohlmann and S. Tang, Multidimensional backward stochastic Riccati equations ...
  • D.H. Lehmer, A new approach to Bernoulli polynomials, Amer. Math. ...
  • Q. Lu and T. Wang, Optimal feedback controls of stochastic ...
  • Q. Lu, T. Wang, and X. Zhang, Characterization of optimal ...
  • K. Maleknejad, M. Khodabin, and F. Hosseini Shekarabi, Modified block ...
  • K. Maleknejad, M. Khodabin, and M. Rostami, Numerical solution of ...
  • F. Mirzaee and E. Hadadiyan, Numerical solution of Volterra–Fredholm integral ...
  • F. Mirzaee, N. Samadyar, and S.F. Hosseini, A new scheme ...
  • E.H. Ouda, The efficient generalized Laguerre parameterization for quadratic optimal ...
  • S. Peng and Z. Wu, Fully coupled forward-backwards stochastic differential ...
  • M. Saffarzadeh, A. Delavarkhalafi, and Z. Nikoueinezhad, Numerical method for ...
  • R. Schlosser, A stochastic dynamic pricing and advertising model under ...
  • Y. Shang, Optimal control strategies for virus spreading in inhomogeneous ...
  • S. Tang, Dynamic programming for general linear quadratic optimal stochastic ...
  • K.L. Teo, D.W. Reid, and I.E. Boyd, Stochastic optimal control ...
  • E. Tohidi, A.H. Bhrawy, and K. Erfani, A collocation method ...
  • N. Touzi and A. Tourin, Optimal Stochastic Control, Stochastic Target ...
  • G. Wang, Z. Wu, and J. Xiong, An Introduction to ...
  • W.M. Wonham, On a matrix Riccati equation of stochastic control, ...
  • J.L. Wu and T.T. Lee, Robust H∞ control problem for ...
  • S. Xing, Y. Liu, and D.Y. Liu, An improved iterative ...
  • R. Zeghdane, Numerical solution of stochastic integral equations by using ...
  • H. Zhang and X. Zhang, Stochastic linear quadratic optimal control ...
  • J. Zheng and L. Qiu, On the existence of a ...
  • K. Zhou and C.J. Doyle, Essentials of Robust Control, Prentice ...
  • نمایش کامل مراجع