Pareto-efficient situations in infinite and finite pure-strategy staircase-function games

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 81

فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-15-11_002

تاریخ نمایه سازی: 17 تیر 1403

چکیده مقاله:

A computationally tractable method is suggested for solving N-person games in which players’ pure strategies are staircase functions. The solution is meant to be Pareto-efficient. Owing to the payoff subinterval-wise summing, the N-person staircase-function game is considered as a succession of subinterval N-person games in which strategies are constants. In the case of a finite staircase-function game, each constant-strategy game is an N-dimensional-matrix game whose size is relatively far smaller to solve it in a reasonable time. It is proved that any staircase-function game has a single Pareto-efficient situation if every constant-strategy game has a single Pareto-efficient situation, and vice versa. Besides, it is proved that, whichever the staircase-function game continuity is, any Pareto-efficient situation of staircase function-strategies is a stack of successive Pareto-efficient situations in the constant-strategy games. If a staircase-function game has multiple Pareto-efficient situations, the best efficient situation is one which is the farthest from the most unprofitable payoffs. In terms of ۰-۱-standardization, the best efficient situation is the farthest from the zero payoffs.

نویسندگان

Vadim Romanuke

Faculty of Mechanical and Electrical Engineering, Polish Naval Academy, Gdynia, Poland

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • S. Adlakha, R. Johari, and G.Y. Weintraub, Equilibria of dynamic ...
  • J.P. Benoit and V. Krishna, Finitely repeated games, Econometrica ۵۳ ...
  • S.P. Coraluppi and S.I. Marcus, Risk-sensitive and minimax control of ...
  • R.E. Edwards, Functional Analysis: Theory and Applications, Holt, Rinehart and ...
  • D. G,asior and M. Drwal, Pareto-optimal Nash equilibrium in capacity ...
  • J.C. Harsanyi and R. Selten, A General Theory of Equilibrium ...
  • D. Hirshleifer, D. Jiang, and Y.M. DiGiovanni, Mood beta and ...
  • H. Khaloie, A. Abdollahi, M. Shafie-khah, A. Anvari-Moghaddam, S. Nojavan, ...
  • S. Kim, Y.R. Lee, and M.K. Kim, Flexible risk control ...
  • S.C. Kontogiannis, P.N. Panagopoulou, and P.G. Spirakis, Polynomial algorithms for ...
  • C.E. Lemke and J.T. Howson, Equilibrium points of bimatrix games, ...
  • K. Leyton-Brown and Y. Shoham, Essentials of Game Theory: A ...
  • Y. Li, K. Li, Y. Xie, J. Liu, C. Fu, ...
  • Q. Liu, Y. He, and J. Wang, Optimal control for ...
  • G.J. Mailath and L. Samuelson, Repeated Games and Reputations: Long-Run ...
  • H. Moulin, Theorie des jeux pour l’economie et la politique, ...
  • R.B. Myerson, Game Theory: Analysis of Conflict, Harvard University Press, ...
  • N. Nisan, T. Roughgarden, E. Tardos, and V.V. Vazirani, Algorithmic ...
  • S. Rahal, D.J. Papageorgiou, and Z. Li, Hybrid strategies using ...
  • V.V. Romanuke and V.G. Kamburg, Approximation of isomorphic infinite two-person ...
  • V.V. Romanuke, Finite approximation of continuous noncooperative two-person games on ...
  • T.C. Schelling, The Strategy of Conflict, Harvard University, ۱۹۸۰ ...
  • Y. Teraoka, A two-person game of timing with random arrival ...
  • N.N. Vorob’yov, Game theory fundamentals. Noncooperative games, Nauka, Moscow, ۱۹۸۴ ...
  • N.N. Vorob’yov, Game theory for economists-cyberneticists, Nauka, Moscow, ۱۹۸۵ ...
  • K.E. Wee and A. Iyer, Consolidating or non-consolidating queues: A ...
  • J. Yang, Y.-S. Chen, Y. Sun, H.-X. Yang, and Y. ...
  • E.B. Yanovskaya, Minimax theorems for games on the unit square, ...
  • E.B. Yanovskaya, Antagonistic games played in function spaces, Lithuan. Math. ...
  • D. Ye and J. Chen, Non-cooperative games on multidimensional resource ...
  • Z. Zhou and Z. Jin, Optimal equilibrium barrier strategies for ...
  • نمایش کامل مراجع