Reviewing and evaluating the customer validation system in risk management with the approach of fee income research in Melli Bank of Iran

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 96

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-15-10_016

تاریخ نمایه سازی: 17 تیر 1403

چکیده مقاله:

This research was done with the aim of designing a customer validation system model based on risk management with the approach of realizing fee income in the National Bank of Iran. The current research is applied in terms of purpose and in terms of method, it is a mixed (mixed)-exploratory design, which is based on grounded theory in the qualitative stage and descriptive-survey method in the quantitative stage. Based on the theme analysis method, after the interviews with the experts, which were conducted after the theoretical saturation of ۱۵ interviews, all the text of the interviews was entered into the Max QDA software, and then the primary codes and sub- and main categories were extracted. Then, based on the Strauss and Corbin model, the central, causal, strategic, consequences, interventionists and contextual factors categories were identified. Finally, the research model was designed. In order to ensure the coordination of the data with the factor structure, and the quality indicators of the model, a questionnaire consisting of ۹۵ items was distributed to a quantitatively wide population including ۳۸۴ employees of National Bank. The data were analyzed using the structural equation modelling approach. The results of the qualitative part showed that the central phenomenon includes a customer validation system, causal conditions including risk management, background conditions including customer orientation, strategies and measures including banking facilities, and intervening conditions including cultural factors. The consequences include fee income and profitability. According to the results presented in the research model review, it can be stated that causal conditions (risk management) have a positive and significant effect on the central category of the customer validation system. The central category of the customer validation system is on strategies (banking facilities) which have a positive and significant effect. Background conditions (customer-oriented) have a positive and significant effect on strategies. Intervening conditions (cultural factors) have a positive and significant effect on strategies. Strategies have a positive and significant impact on outcomes (fee income and profitability).

کلیدواژه ها:

نویسندگان

Hassan Zolfaghari

Department of Management, Astara Branch, Islamic Azad University, Astara, Iran

Alireza Farokhbakht Foomani

Department of Management, Bandar Anzali Branch, Islamic Azad University, Bandar Anzali, Iran

Nima Ranji Jafroudi

Department of Management, Bandar Anzali Branch, Islamic Azad University, Bandar Anzali, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. Al-Barzi, M. Pourzarandi, M. Ibrahim, and M. Khan Babaei, ...
  • B. Al-Own and M. Minhat Simon Gao, Stock options and ...
  • A. Arab Mazara and P. Rouyin Ten, Factors affecting the ...
  • A. Bafande and R. Rahimi, Providing a fuzzy expert system ...
  • Gh. Bennouna and M. Tkiouat, Scoring in microfinance: credit risk ...
  • D. Bulbul, H. Hakenes, and C. Lambert, What influences banks’ ...
  • W. Chen, G. Xiang, Y. Liu, and K. Wang, Credit ...
  • N. Dehmardeh, J. Shahraki, S. Saifuddinpour, and M. Esfandiari, Validation ...
  • H. Hillbun, Keng-Ming (Terence) TienSonika Singh, J. Retail. Consumer Serv. ...
  • A. Incekara and H. Ctinkaya, Credit risk management: A panel ...
  • M. Jalili, M. Khodayi Waleh Zakard, and M. Kenshlo, Validation ...
  • S. Kazemi, Investigating the factors affecting the credit risk of ...
  • H. Khaleghifar, Presenting the model of factors affecting credit risk ...
  • M.A. Kimiagari, M.J. Amini, H. Tabatabai Arani, and L. Hosseini, ...
  • J. Lin and L. Han, Lattice clustering and its application ...
  • Y. Lui, New Issues In Credit Scoring Applications, George Agust, ...
  • T. Nikraftar, E. Hosseini, M. Aqeli, and M. Moslimi Kaviri, ...
  • H. Mirzaei, R. Nazarian and R. Bagheri, Investigating factors affecting ...
  • R. Rai and A. Soroush, Validation of small and medium-sized ...
  • S. Sadeghi Khani and F. Ramezani, Credit risk and rating ...
  • F. Shamsi Mirfaiz, Designing and explaining the credit risk model ...
  • S.M. Shariat Panahi and S. Hashemi Barkadehi, Presenting a model ...
  • S. Shi, R. Tse, W. Luo, S. D’Addona, and G. ...
  • S. Singh, B.P.S. Murthi, and E. Steffes, Developing a measure ...
  • M. Sivabalakrishnan, S. Boopesh, M.K. Priyan, S. Jeeva, P. Vigneshwaran, ...
  • M. Tagvi, A.A. Lotfi, and A. Sohrabi, Credit risk model ...
  • F. Tari and A. R. Ghasemi, Designing the validation model ...
  • L.C. Thomas, A survey of credit and behavioral scoring: Forecasting ...
  • H. Van Greuning and S. Brajovic-Bratanovic, Analyzing Banking Risk: A ...
  • T.C. Wilson, Portfolio credit risk(I), Federal Reserve Bank of New ...
  • J. Wu and Y. L. Chan, Lot-sizing policies for deteriorating ...
  • C. Zhao, M. Li, and J. Wang, The mechanism of ...
  • نمایش کامل مراجع