Recommender systems using cloud-based computer networks to predict service quality

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 85

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-15-10_028

تاریخ نمایه سازی: 17 تیر 1403

چکیده مقاله:

In recommender systems, the user items are offered tailored to users’ requirements. Because there are multiple cloud services, recommending a suitable service for users' requirements is of paramount importance. Cloud recommender systems are qualified depending on the extent to which they accurately predict service quality values. Because no service was chosen by the user beforehand, and no record of the user's selections is available, it became challenging to recommend it to users. To promote the recommender system quality, to accurately predict service quality values by offering various procedures, including collaborative filtering, matrix factorization, and clustering. This review article first mentions the general problem and states the need for research, followed by examining and expressing the kinds of recommender systems along with their problems and challenges. In the present review, various approaches, platforms, and solutions are reviewed to articulate the pros and cons of individual approaches, simulation models, and evaluation metrics employed in the reviewed techniques. The measured values in various approaches of the papers are compared with one another in several diagrams. This review paper reviews and introduces the entire datasets applied in the studies.

کلیدواژه ها:

نویسندگان

Mehran Aghaei

Department of Computer Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran

Sepideh Adabi

Department of Computer Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran

Parvaneh Asghari

Department of Computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Hamid Haj Seyyed Javadi

Department of Mathematics and Computer Science, Shahed University, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • C.C. Aggarwal and C.C. Aggarwal, Social and trust-centric recommender systems, ...
  • M. Aghaei, P. Asghari, S. Adabi, and H. Haj Seyyed ...
  • Z. Ali, S. Khusro, and I. Ullah, A hybrid book ...
  • X. Amatriain, A. Jaimes, N. Oliver, and J. M. Pujol, ...
  • B. Barzegar, H. Motameni, and A. Movaghar, Eatsdcd: A green ...
  • J. Basiri, A. Shakery, B. Moshiri, and M. Zi Hayat, ...
  • J. Basiri, A. Shakery, B. Moshiri, and M. Zi Hayat, ...
  • J. Beel, C. Breitinger, S. Langer, A. Lommatzsch, and B. ...
  • H. Bouazza, B. Said, and F. Zohra Laallam, A hybrid ...
  • L. Cao, Non-iid recommender systems: A review and framework of ...
  • W. Carrer-Neto, M. Hernandez-Alcaraz, R. Valencia-Garcıa, and F. Garcıa-Sanchez, Social ...
  • Y. Ho Cho, J. Kim, and S. Hie Kim, A ...
  • B. Deebak and F. Al-Turjman, A novel community-based trust aware ...
  • M. D. Ekstrand, J.T. Riedl, J.A. Konstan, Collaborative filtering recommender ...
  • M. Etemadi, S. Bazzaz Abkenar, A. Ahmadzadeh, M. Haghi Kashani, ...
  • S. Fatehi, Task scheduling optimization based on heuristic algorithm for ...
  • S. Fatehi, H. Motameni, B. Barzegar, and M. Golsorkhtabaramiri, Energy ...
  • D. Gavalas, V. Kasapakis, C. Konstantopoulos, K. Mastakas, and G. ...
  • D. Gavalas, C. Konstantopoulos, K. Mastakas, and G. Pantziou, Mobile ...
  • M. Ghobakhloo and M. Ghobakhloo, Design of a personalized recommender ...
  • L. Guo, B. Jin, C. Yao, H. Yang, D. Huang, ...
  • V.L. Hallappanavar, C.M. Bulla, and MN. Birje, Ann based estimation ...
  • Y. Himeur, A. Alsalemi, A. Al-Kababji, F. Bensaali, A. Amira, ...
  • P. Kosmides, C. Remoundou, K. Demestichas, I. Loumiotis, E. Adamopoulou, ...
  • G. Liang, C. Sun, J. Zhou, F. Luo, J. Wen, ...
  • W. Liang, S. Xie, J. Cai, J. Xu, Y. Hu, ...
  • J. Lu, D. Wu, M. Mao, W. Wang, and G. ...
  • Z. Ma, M. H. Nejat, H. Vahdat-Nejad, B. Barzegar, and ...
  • J. Masoudi, B. Barzegar, and H. Motameni, Energy-aware virtual machine ...
  • S.E. Middleton, N.R. Shadbolt, and D.C. De Roure, Ontological user ...
  • S.H. Min and I. Han, Recommender systems using support vector ...
  • M.H. Nejat, H. Motameni, H. Vahdat-Nejad, and B. Barzegar, Efficient ...
  • Badieh. Nikzad, B. Barzegar, and H. Motameni, Sla-aware and energy-efficient ...
  • Z. Peng, B. Barzegar, M. Yarahmadi, H. Motameni, and P. ...
  • Y. Qian, Y. Zhang, X. Ma, H. Yu, and L. ...
  • T. Shao, X. Yang, F. Wang, C. Yan, and A. ...
  • B. Shapira, L. Rokach, and F. Ricci, Recommender systems: Techniques, ...
  • C. Sharma and P. Bedi, Ccfrs–community-based collaborative filtering recommender system, ...
  • S.K. Shinde and U. Kulkarni, Hybrid personalized recommender system using ...
  • J. Son and S. Bum Kim, Academic paper recommender system ...
  • J. Sun, Z. Wang, X. Luo, P. Shi, W. Wang, ...
  • Q. Zhang, J. Lu, and Y. Jin, Artificial intelligence in ...
  • Y. Zhang, Grorec: A group-centric intelligent recommender system integrating social, ...
  • D. Zhong, G. Yang, J. Fan, B. Tian, and Y. ...
  • نمایش کامل مراجع