Recommender systems using cloud-based computer networks to predict service quality
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 85
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-15-10_028
تاریخ نمایه سازی: 17 تیر 1403
چکیده مقاله:
In recommender systems, the user items are offered tailored to users’ requirements. Because there are multiple cloud services, recommending a suitable service for users' requirements is of paramount importance. Cloud recommender systems are qualified depending on the extent to which they accurately predict service quality values. Because no service was chosen by the user beforehand, and no record of the user's selections is available, it became challenging to recommend it to users. To promote the recommender system quality, to accurately predict service quality values by offering various procedures, including collaborative filtering, matrix factorization, and clustering. This review article first mentions the general problem and states the need for research, followed by examining and expressing the kinds of recommender systems along with their problems and challenges. In the present review, various approaches, platforms, and solutions are reviewed to articulate the pros and cons of individual approaches, simulation models, and evaluation metrics employed in the reviewed techniques. The measured values in various approaches of the papers are compared with one another in several diagrams. This review paper reviews and introduces the entire datasets applied in the studies.
کلیدواژه ها:
QoS prediction ، Recommendation system ، collaborative filtering ، Matrix factorization ، web services in the cloud
نویسندگان
Mehran Aghaei
Department of Computer Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
Sepideh Adabi
Department of Computer Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
Parvaneh Asghari
Department of Computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Hamid Haj Seyyed Javadi
Department of Mathematics and Computer Science, Shahed University, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :