Improving recurrent forecasting in singular spectrum analysis using Kalman filter algorithm
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 64
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JSMTA-3-1_011
تاریخ نمایه سازی: 2 تیر 1403
چکیده مقاله:
One of the most practical nonparametric methods in analysis of time series observations is the singular spectrum analysis method. This method has been developed and applied to many practical problems across different fields and continuous efforts have been made to improve this method, especially in forecasting. In this paper, the state space model and Kalman filter algorithms are used for noise elimination and time series smoothing. Finally, we compare these forecasting methods' abilities using the root mean squared error criteria for simulation studies and the real datasets.
کلیدواژه ها:
نویسندگان
Masoud Yarmohammadi
Department of Statistics, Payame Noor University, Tehran, Iran
Reza Zabihi Moghadam
Department of Statistics, Payame Noor University, Tehran, Iran
Hossein Hassani
Research Institute for Energy Management and Planning, University of Tehran, Iran