Nonparametric Bayesian optimal designs for unit exponential nonlinear model
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 165
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JSMTA-4-1_005
تاریخ نمایه سازی: 2 تیر 1403
چکیده مقاله:
Nonlinear regression models have widespread applications across diverse scientific disciplines. Achieving precise fitting of the optimal nonlinear model is essential, taking into account the biases inherent in Bayesian optimal design. This study introduces a Bayesian optimal design utilizing the Dirichlet process as a prior. The Dirichlet process is a fundamental tool in exploring Nonparametric Bayesian inference, providing multiple well-suited representations. The research paper presents a novel one-parameter model, termed the ``unit-exponential distribution", specifically designed for the unit interval. Additionally, a representation is employed to approximate the D-optimality criterion, considering the Dirichlet process as a functional tool. Through this approach, the aim is to identify a nonparametric Bayesian optimal design.
کلیدواژه ها:
نویسندگان
Anita Abdollahi Nanvapisheh
Department of Statistics, Razi University, Kermanshah, Iran
Habib Jafari
Department of Statistics, Razi University, Kermanshah, Iran
Soliman Khazaei
Department of Statistics, Razi University, Kermanshah, Iran