Nonparametric Bayesian optimal designs for unit exponential nonlinear model

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 165

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JSMTA-4-1_005

تاریخ نمایه سازی: 2 تیر 1403

چکیده مقاله:

Nonlinear regression models have widespread applications across diverse scientific disciplines‎. ‎Achieving precise fitting of the optimal nonlinear model is essential‎, ‎taking into account the biases inherent in Bayesian optimal design‎. ‎This study introduces a Bayesian optimal design utilizing the Dirichlet process as a prior‎. ‎The Dirichlet process is a fundamental tool in exploring Nonparametric Bayesian inference‎, ‎providing multiple well-suited representations‎. ‎The research paper presents a novel one-parameter model‎, ‎termed the ``unit-exponential distribution"‎, ‎specifically designed for the unit interval‎. ‎Additionally‎, ‎a representation is employed to approximate the D-optimality criterion‎, ‎considering the Dirichlet process as a functional tool‎. ‎Through this approach‎, ‎the aim is to identify a nonparametric Bayesian optimal design.

نویسندگان

Anita Abdollahi Nanvapisheh

Department of Statistics‎, ‎Razi University‎, ‎Kermanshah‎, ‎Iran

Habib Jafari

Department of Statistics‎, ‎Razi University‎, ‎Kermanshah‎, ‎Iran

Soliman Khazaei

Department of Statistics‎, ‎Razi University‎, ‎Kermanshah‎, ‎Iran