Investigating the impacts of technological innovation and renewable energy on environmental pollution in countries selected by the International Renewable Energy Agency: A quantile regression approach
محل انتشار: مجله علوم زیستی خاورمیانه، دوره: 18، شماره: 2
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 136
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CJES-18-2_001
تاریخ نمایه سازی: 31 خرداد 1403
چکیده مقاله:
Investigating the factors affecting CO۲ emissions has always been a challenge. One problem with existing studies is that these studies have been relied on mean-based regression approaches, such as ordinary least squares (OLS) or instrumental variables, which implicitly assumes that the impact of variables along the distribution of CO۲ emissions is the same. Unlike previous studies, the present study will use the quantile regression developed by Koenker & Bassett, which is not limited to the assumption. So that, the purpose of this study is to investigate the impacts of technological innovation and renewable energy on CO۲ emissions in selected countries of the International Renewable Energy Agency (IRENA) using quantile regression over the period ۱۹۹۰-۲۰۱۶. The results of this study exhibited that the impact of renewable energy on CO۲ emissions was negative and statistically significant. This impact is also enhanced in high quantiles (countries with high pollution). In all the studied quantiles, the impact of technological innovations on CO۲ emissions was positive, significant and initially decreasing, while increasing again over time. The results of the symmetry test also indicated that by increasing in the volume of CO۲ emissions, the variable impact of renewable energy upraised. However, no incremental trend was observed in innovation.
کلیدواژه ها:
نویسندگان
Nasim Masoudi
Department of Economics, Faculty of Economics, University of Sistan and Baluchestan, Zahedan, Iran
Nazar Dahmardeh Ghaleno
Department of Economics, Faculty of Economics, University of Sistan and Baluchestan, Zahedan, Iran
Marziyeh Esfandiari
Department of Economics, Faculty of Economics, University of Sistan and Baluchestan, Zahedan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :