Formation of a knowledge base to analyze the issue of transport and the environment

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 165

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CJES-18-5_028

تاریخ نمایه سازی: 31 خرداد 1403

چکیده مقاله:

The environmental impact of transport is significant because transport is a significant user of energy, and burns most of the world's petroleum. This issue creates air pollution, including nitrous oxides and particulates, and is a substantial contributor to global warming through emission of carbon dioxide. This article analyzes the Issue of Transport and the Environment, then solves the evaluation problem of the functional state of vehicle drivers based on the formation and use of a fuzzy knowledge base. The provided the classification of human functional state types. The expediency of using pupillometry as an objective method to analyze the pupillary reaction of a human eye to illumination change is pointed out to assess its functional state. The Analysis of the neural network approach is carried out to determine the functional state of a person's intoxication. It points out its main drawback associated with the impossibility of interpreting the solution obtained using a neural network. To eliminate this drawback and improve the efficiency of decision support to assess the functional state of vehicle drivers, it is proposed to use the mathematical apparatus of fuzzy neural networks to form fuzzy knowledge bases and provide their use in inference mechanisms. In this case, the solution to the problem will be a binary answer ("drunk", "not drunk") with the interpretation of the solution obtained in the form of a set of fuzzy rules written in a natural language understandable to humans. The tasks are set for the formation of a knowledge base to assess the functional state of drivers. The scheme of pupillogram initial data collection is described, as well as the stages of their preparation for Analysis. Pupillogram parameters that significantly characterize the pupillary response of a person to illumination change were identified by an expert method using the methods of correlation analysis: the minimum diameter of the pupil, the diameter of its half constriction, the amplitude of constriction and the time of half expansion. The structure of the generated data sample with the volume of ۱۰۰۰ records is described. A knowledge base was formed after their Analysis, consisting of ۲۶۳۲ fuzzy production rules. To assess the accuracy of determining the functional state of a person based on the knowledge base, a balanced test sample of ۴۰۰ records (۲۰۰ records of each class of functional state) was compiled. The test results showed that the number of type ۱ errors was ۱%, and the number of type ۲ errors was ۳%. The overall accuracy of determining the functional state of a person based on the generated knowledge base was ۹۶%. The generated fuzzy knowledge base can be effectively used in decision support systems to assess the functional state of vehicle drivers when they undergo a pre-trip medical examination.

نویسندگان

Ilyas Idrisovich Ismagilov

Department of Economic Theory and Econometrics, Institute of Management, Economics and Finance of Kazan (Volga Region) Federal University, Kazan, Russia

Aynur Ayratovich Murtazin

Department of Economic Theory and Econometrics, Institute of Management, Economics and Finance of Kazan (Volga Region) Federal University, Kazan, Russia

Dina Vladimirovna Kataseva

Department of Information Security Systems, Institute of Computer Technologies and Information Security, Kazan National Research Technical University, Kazan, Russia

Alexey Sergeevich Katasev

Department of Information Security Systems, Institute of Computer Technologies and Information Security, Kazan National Research Technical University, Kazan, Russia

Anastasia Olegovna Barinova

Department of Information Security Systems, Institute of Computer Technologies and Information Security, Kazan National Research Technical University, Kazan, Russia

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abro, AG, Mohamad Saleh, J, Bin Masri, S ۲۰۱۱, Features ...
  • Agranovich, YYu, Kontsevaya, NV, Podvalny, SL, Khatskevich, VL ۲۰۱۴, A ...
  • Akhmetvaleev, AM, Katasev, AS, ۲۰۱۸, Neural network model of human ...
  • Alekseev, A, Katasev, A, Kirillov, A, Khassianov, A, Zuev, D ...
  • Chernorizov, AM, Isaychev, SA, Zinchenko, YP, Gradoboeva, ON, Galatenko, VV ...
  • Chibisov, SM, Dementiev, MV, Meladze, ZA, Skorik, AS, Neborak, EV ...
  • Chupin, MM, Katasev, AS, Akhmetvaleev, AM, Kataseva, DV ۲۰۱۹, Neuro-fuzzy ...
  • Dagaeva, M, Garaeva, A, Anikin, I, Makhmutova, A, Minnikhanov, R ...
  • Gerike, R, de Nazelle, A, Wittwer, R & Parkin, J ...
  • Ismagilov, II, Mustafin, AN, Shleymovich, MP, Katasev, AS, Lyasheva, SA, ...
  • Ji, K, Shen, Y ۲۰۲۰, Dyadic wavelet transform and signal ...
  • Katasev, AS ۲۰۱۹, Neuro-fuzzy model of fuzzy rules formation for ...
  • Kysil, S ۲۰۱۷, The issue of transport infrastructure organization for ...
  • Lomakin, N, Shokhnekh, A, Sazonov, S, Lukyanov, G, Gorbunova ۲۰۱۹, ...
  • Mazhari, M & Ferguson, J ۲۰۱۸, Bacterial responses to environmental ...
  • Caspian Journal of Environmental Sciences, ۱۶: ۱-۱۰ ...
  • Perfilieva, IG, Yarushkina, NG, Afanasieva, TV, Romanov, AA ۲۰۱۶, Web-based ...
  • Shleymovich, MP, Dagaeva, MV, Katasev, AS, Lyasheva, SA, Medvedev, MV ...
  • Siergiejczyk, M, Pas, J & Rosinski, A ۲۰۱۶, Issue of ...
  • Smyl, S ۲۰۲۰, A hybrid method of exponential smoothing and ...
  • Varshney, N, Singh, JP ۲۰۲۰, Road transport safety: VANET using ...
  • Watanabe, T, Utsumi, T, Sugiyama, T, Sugasawa, J, Ikeda, T ...
  • Winkler, C & Mocanu, T ۲۰۱۷, Methodology and application of ...
  • Zhang, Q, Xia, D, Wang, G ۲۰۱۷, Three-way decision model ...
  • Zheng, LJ, Mountstephens, J, Teo, J ۲۰۲۰, Four-class emotion classification ...
  • نمایش کامل مراجع