سیویلیکا را در شبکه های اجتماعی دنبال نمایید.

Leveraging Transfer Learning for High-Accuracy Breast CancerClassification f rom Histopathological Images

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 171

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

EECMAI06_037

تاریخ نمایه سازی: 30 خرداد 1403

چکیده مقاله Leveraging Transfer Learning for High-Accuracy Breast CancerClassification f rom Histopathological Images

Early detection of breast cancer remains an important global health concern. Inthis paper, we present a novel method for classifying breast cancer usinghistopathological images from the BreakHis dataset at 400X resolution. Weextract high-level features capturing malignancy patterns using VGG19 andDenseNet201. For final classification, these features are concatenated and fed intoan Artificial Neural Network (ANN), which achieves an impressive accuracy of99%. The high accuracy of our methodology demonstrates its potential as aneffective diagnostic tool in the digital pathology era.

کلیدواژه های Leveraging Transfer Learning for High-Accuracy Breast CancerClassification f rom Histopathological Images:

نویسندگان مقاله Leveraging Transfer Learning for High-Accuracy Breast CancerClassification f rom Histopathological Images

Amir Mohammad Sharafaddini

Department of Computer Science, Shahid Bahonar University of Kerman, Kerman,Box No. ۷۶۱۳۵-۱۳۳, Kerman, Iran.

Najme Mansouri

Department of Computer Science, Shahid Bahonar University of Kerman, Kerman,Box No. ۷۶۱۳۵-۱۳۳, Kerman, Iran