Leveraging Transfer Learning for High-Accuracy Breast CancerClassification f rom Histopathological Images

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 133

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

EECMAI06_037

تاریخ نمایه سازی: 30 خرداد 1403

چکیده مقاله:

Early detection of breast cancer remains an important global health concern. Inthis paper, we present a novel method for classifying breast cancer usinghistopathological images from the BreakHis dataset at ۴۰۰X resolution. Weextract high-level features capturing malignancy patterns using VGG۱۹ andDenseNet۲۰۱. For final classification, these features are concatenated and fed intoan Artificial Neural Network (ANN), which achieves an impressive accuracy of۹۹%. The high accuracy of our methodology demonstrates its potential as aneffective diagnostic tool in the digital pathology era.

نویسندگان

Amir Mohammad Sharafaddini

Department of Computer Science, Shahid Bahonar University of Kerman, Kerman,Box No. ۷۶۱۳۵-۱۳۳, Kerman, Iran.

Najme Mansouri

Department of Computer Science, Shahid Bahonar University of Kerman, Kerman,Box No. ۷۶۱۳۵-۱۳۳, Kerman, Iran