Existence of solutions for stochastic functional integral equations via Petryshyn’s fixed point theorem

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 192

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-15-9_002

تاریخ نمایه سازی: 29 خرداد 1403

چکیده مقاله:

The purpose of this paper is to analyze the solvability of a class of stochastic functional integral equations by utilizing the measure of non-compactness with Petryshyn’s fixed point theorem in a Banach space. The results obtained in this paper cover numerous existing results concluded under some weaker conditions by many authors. An example is given to support our main theorem.

کلیدواژه ها:

Fixed point theorem ، Measure of non-compactness (MNC) ، Integral equation (FIE)

نویسندگان

Ketki Singh

Department of Mathematics, Deshbandhu College, University of Delhi, New Delhi, India

Harindri Chaudhary

Department of Mathematics, Deshbandhu College, University of Delhi, New Delhi, India

Soniya Singh

Department of Applied Mathematics and Scientific Computing, IIT Roorkee, Roorkee-۲۴۷۶۶۷, India

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • E. Castillo, A. Iglesias, and R. Ruiz-Cobo, Functional Equations in ...
  • A. Deep, S. Abbas, B. Singh, M.R. Alharthi, and K.S. ...
  • A. Deep, Deepmala, and R. Ezzati, Application of Petryshyn’s fixed ...
  • A. Deep, Deepmala, and M. Rabbani, A numerical method for ...
  • A. Deep, Deepmala, and J. Rezaee Roshan, Solvability for generalized ...
  • A. Deep, D. Dhiman, B. Hazarika, and S. Abbas, Solvability ...
  • A. Deep, Deepmala, and B. Hazarika, An existence result for ...
  • A. Deep, A. Kumar, B. Hazarika, and S. Abbas, An ...
  • A. Deep, A. Kumar, S. Abbas, and M. Rabbani, Solvability ...
  • L.S. Goldenstein and A.S. Markus, On a measure of noncompactness ...
  • G. Gripenberg, S.-O. Londen and O. Staffans, Volterra integral and ...
  • Y. Guo, M. Chen, X.B. Shu, and F. Xu, The ...
  • I. Ito, On the existence and uniqueness of solutions of ...
  • M. Kazemi, On existence of solutions for some functional integral ...
  • M. Kazemi, A. Deep, and J. Nieto, An existence result ...
  • M. Kazemi, A. Deep and A. Yaghoobnia, Application of fixed ...
  • M. Kazemi and R. Ezzati, Existence of solutions for some ...
  • M. Kazemi and A.R. Yaghoobnia, Application of fixed point theorem ...
  • F.C. Klebaner, Introduction to Stochastic Calculus with Applications, World Scientific ...
  • K. Kuratowski, Sur les espaces complets, Fund. Math. ۱ (۱۹۳۰) ...
  • F. Mirzaee and N. Samadyar, Extension of Darbo fixed-point theorem ...
  • R.D. Nussbaum, The fixed point index and asymptotic fixed point ...
  • W. Petryshyn, Structure of the fixed points sets of k-set-contractions, ...
  • M. Rabbani, A. Deep, and Deepmala, On some generalized non-linear ...
  • A.N.V. Rao and C.P. Tsokos, On a class of stochastic ...
  • M.T. Rashed, Numerical solutions of functional integral equations, Appl. Math. ...
  • P.K. Sahoo and P. Kannappan, Introduction to Functional Equations, CRC ...
  • L. Shu, X.B. Shu, Q. Zhu, and F. Xu Existence ...
  • S. Singh, B. Singh, K.S. Nisar, A. Hyder, and M. ...
  • S. Singh, B. Watson and P. Srivastava, Fixed Point Theory ...
  • R. Subramaniam, K. Balachandran, and J.K. Kim, Existence of random ...
  • J. Turo, Existence and uniqueness of random solutions of nonlinear ...
  • نمایش کامل مراجع