Feature selection method based on clustering technique and optimization algorithm

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 81

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-15-9_021

تاریخ نمایه سازی: 29 خرداد 1403

چکیده مقاله:

Data platforms with large dimensions, despite the opportunities they create, create many computational challenges. One of the problems of data with large dimensions is that most of the time, all the characteristics of the data are not important and vital to finding the knowledge that is hidden in them. These features can have a negative effect on the performance of the classification system. An important technique to overcome this problem is feature selection. During the feature selection process, a subset of primary features is selected by removing irrelevant and redundant features. In this article, a hierarchical algorithm based on the coverage solution will be presented, which selects effective features by using relationships between features and clustering techniques. This new method is named GCPSO, which is based on the optimization algorithm and selects the appropriate features by using the feature clustering technique. The feature clustering method presented in this article is different from previous algorithms. In this method, instead of using traditional clustering models, final clusters are formed by using the graphic structure of features and relationships between features. The UCI database has been used to evaluate the proposed method due to its extensive characteristics. The efficiency of the proposed model has also been compared with the feature selection methods based on the coverage solution that uses evolutionary algorithms in the feature selection process. The obtained results indicate that the proposed method has performed well in terms of choosing the optimal subset and classification accuracy on all data sets and in comparison with other methods.

نویسندگان

Sara Dehghani

Department of Computer Engineering, Yasuj Branch, Islamic Azad University, Yasuj, Iran

Razieh Mlekhosseini

Department of Computer Engineering, Yasuj Branch, Islamic Azad University, Yasuj, Iran

Karamollah Bagherifard

Department of Computer Engineering, Yasuj Branch, Islamic Azad University, Yasuj, Iran

S. Hadi Yaghoubian

Department of Computer Engineering, Yasuj Branch, Islamic Azad University, Yasuj, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. Abdel-Basset, D. El-Shahat, I. El-Henawy, V.H.C. De Albuquerque, and ...
  • M.H. Aghdam, N. Ghasem-Aghaee, and M.E. Basiri, Text feature selection ...
  • U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, ...
  • F. Amini and G. Hu, A two-layer feature selection method ...
  • A. Asuncion and D. Newman, UCI repository of machine learning ...
  • !http://archive.ics.uci.edu/ml/datasets.php., ۲۰۰۷ ...
  • S.R. Bandela and T.K. Kumar, Unsupervised feature selection and NMF ...
  • S. Bandyopadhyay, T. Bhadra, P. Mitra, and U. Maulik, Integration ...
  • V.D. Blondel, J.L. Guillaume, R. Lambiotte, and E. Lefebvre, Fast ...
  • J.M. Cadenas, M.C. Garrido, and R. Mart´ınez, Feature subset selection ...
  • L. Carmen, M. Reinders, and L. Wessels, Random subspace method ...
  • G. Chandrashekar and F. Sahin, A survey on feature selection ...
  • A.K. Farahat, A. Ghodsi, and M.S. Kamel, Efficient greedy feature ...
  • I. Guyon and A.E. Elisseeff, An introduction to variable and ...
  • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, Gene ...
  • E. Hancer, A new multi-objective differential evolution approach for simultaneous ...
  • S.M. Hazrati Fard, A. Hamzeh, and S. Hashemi, Using reinforcement ...
  • H. Liu and L. Yu, Toward integrating feature selection algorithms ...
  • Y. Liu and Y.F. Zheng, FS-SFS: A novel feature selection ...
  • J. Kennedy and R. Eberhart, Particle swarm optimization, Proc. ICNN’۹۵-Int. ...
  • J. Kim, F.J. Kohout, N.H. Nie, C.H. Hull, J.G. Jenkins, ...
  • N. Maleki, Y. Zeinali, and S.T.A. Niaki, A k-NN method ...
  • P. Nimbalkar and D. Kshirsagar, Feature selection for intrusion detection ...
  • M. Paniri, M.B. Dowlatshahi, and H. Nezamabadi-Pour, MLACO: A multi-label ...
  • R. Pascual-Marqui, D. Lehmann, K. Kochi, T. Kinoshita, and N. ...
  • G. Quanquan, L. Zhenhui, and J. Han, Generalized Fisher score ...
  • L.E. Raileanu and K. Stoffel, Theoretical comparison between the Gini ...
  • M. Rostami, K. Berahmand, and S. Forouzandeh, A novel community ...
  • M. Rostami, K. Berahmand, E. Nasiri, and S. Forouzandeh, Review ...
  • R. Ruiz, J.C. Riquelme, J.S. Aguilar-Ruiz, and M. Garc´ıa-Torres, Fast ...
  • Y. Saeys, I. Inza, and P. Larranaga, A review of ...
  • M. Sharif, J. Amin, M. Raza, M. Yasmin, and S.C. ...
  • C. Shi, Z. Gu, C. Duan, and Q. Tian, Multi-view ...
  • Q. Song, J. Ni, and G. Wang, A fast clustering-based ...
  • X. Sun, Y. Liu, J. Li, J. Zhu, H. Chen, ...
  • S. Theodoridis and K. Koutroumbas, Pattern Recognition, Academic Press, Oxford, ...
  • S. Theodoridis and C. Koutroumbas, Pattern Recognition, ۴th Edn, Elsevier ...
  • D. Wang, Z. Zhang, R. Bai, and Y. Mao, A ...
  • H. Xiaofei, C. Deng, and P. Niyogi, Laplacian Score for ...
  • Y. Yang, Z. Ma, A.G. Hauptmann, and N. Sebe, Feature ...
  • S. Yildirim, Y. Kaya, and F. Kılıc, A modified feature ...
  • Y. Zhang, D. Gong, X. Gao, T. Tian, and X. ...
  • Z. Zhang, and E.R. Hancock, Hypergraph based information-theoretic feature selection, ...
  • Y. Zhou, W. Zhang, J. Kang, X. Zhang, and X. ...
  • نمایش کامل مراجع