Flexible Job Shop Scheduling Problem Considering Upper Bounds for the Amount of Interruptions Between Operations and Machines Maintenance Activities
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 37، شماره: 8
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 99
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-37-8_012
تاریخ نمایه سازی: 23 خرداد 1403
چکیده مقاله:
In modern production environments where perishable products are manufactured in a job shop system, machine reliability is of utmost importance, and delays during job processing are not acceptable. Therefore, it becomes crucial to consider machines maintenance activities and set upper bounds for interruptions between job operations. This paper tackels the Flexible Job Shop Scheduling Problem taking into account these factors. The study is conducted in two phases. Initially, a novel Mixed-Integer Linear Programming (MILP) model is elaborated for the problem and juxtaposed with the Benders decomposition method to assess computational efficiency. Nevertheless, owing to the elevated complexity of the problem, attaining an optimal solution for instances of realistic size poses an exceptionally challenging task using exact methods. Thus, in the second stage, a Discrete Grey Wolf Optimizer (D-GWO) as an alternative approach to solve the problem is proposed. The performance of the extended algorithms is evaluated through numerical tests. The findings indicate that for small instances, the Benders decomposition method outperforms other approaches. Nevertheless, as the instances grow in size, the efficiency of exact methods diminishes, and the Discrete Grey Wolf Optimizer (D-GWO) performs better under such conditions. Overall, this study highlights the importance of considering machines maintenance activities and interruptions in scheduling of job shop for the production of perishable products. The proposed model and Benders decomposition method in small instances, and the metaheuristic algorithm in large instances provide viable solutions.
کلیدواژه ها:
نویسندگان
K. Mahdavi
Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran
M. Mohammadi
Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran
F. Ahmadizar
Department of Industrial Engineering, University of Kurdistan, Sanandaj, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :