A New Modified Bacterial Foraging MPPT Technique with Dynamic Mutation Rates for Photovoltaic Systems under Partial Shading Conditions
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 37، شماره: 8
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 147
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-37-8_009
تاریخ نمایه سازی: 23 خرداد 1403
چکیده مقاله:
This research article presents a novel approach to Maximum Power Point Tracking (MPPT) for photovoltaic systems, employing a modified bacterial foraging algorithm with dynamically adjustable mutation rates. This method is specifically tailored to address the challenges presented by partial shading conditions, ensuring efficient and rapid tracking of the MPP while preventing local optima entrapment. To evaluate the performance of this innovative technique, a comparative analysis is conducted against the original bacterial foraging algorithm and the grey wolf optimization algorithm, both commonly employed in MPPT applications. The modified algorithm incorporates a unique strategy that dynamically adapts mutation rates based on the algorithm's convergence behavior, enhancing the tracking accuracy from ۸۱.۳۱% to ۸۹.۳۹%. To validate the effectiveness of the proposed technique, extensive simulations are carried out using MATLAB Simulink, considering various partial shading scenarios commonly encountered in practical photovoltaic applications. It's worth noting that the shading scenario data were extracted from the NASA Worldwide Prediction of Energy website, specifically from the city of Ain El Ibel Djelfa irradiance records. The simulation results unequivocally demonstrate the superiority of the modified bacterial foraging MPPT technique over both algorithms in terms of tracking efficiency (۰.۴s to ۰.۹s) and robustness under partial shading conditions. The findings of this research offer valuable insights into the potential advantages of employing a modified bacterial foraging approach for MPPT applications. This innovative techniques with its ability significantly enhance its performance in real-world scenarios involving partial shading, positioning it as a promising choice for optimizing photovoltaic system efficiency and power output.
کلیدواژه ها:
photovoltaic systems ، Maximum power point tracking ، partial shading ، Bacterial Foraging Algorithm ، Grey Wolf Optimization ، Dynamic Mutation Rate
نویسندگان
O. Fergani
Laboratory of Identification, Commande, Control and Communication (LI۳CUB), University Mohamed KhiderBiskra, Biskra, Algeria
R. Mechgoug
Electrical Engineering Department, LARHYSS Laboratory, University of Biskra, Biskra, Algeria
A. Afulay Bouzid
Institute of Automation and Infocommunication, University of Miskolc, Miskolc, Hungary
N. Tkouti
Electrical Engineering Department, LARHYSS Laboratory, University of Biskra, Biskra, Algeria
A. Mazari
Laboratory of Applied and Automation and Industial Diagnostic (LAADI), University of Djelfa, Djelfa, Algeria
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :