Developing a model to predict fraudulent financial reporting

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 177

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-15-8_008

تاریخ نمایه سازی: 20 خرداد 1403

چکیده مقاله:

This paper investigates how well the Beneish and Spathis models can predict fraudulent financial reporting. The coefficients of these two models were adjusted using the logistic regression and the newly adjusted models were investigated for the prediction of fraudulent financial reporting. This research seeks to design a suitable native model to predict possible fraud in financial statements. The statistical population included ۹۹ manufacturing companies listed on the Tehran Stock Exchange (۱۰۸۹ observations) during the years ۲۰۰۹-۲۰۱۹. The results show that the Beneish and Spathis models are not good at predicting fraudulent financial reporting, but their adjusted versions can predict it with an accuracy of ۷۲% and ۶۴%, respectively. The prediction accuracy rate of the extracted model based on the best explanatory variables is ۷۹%, which shows that it is possible to predict and discover fraudulent financial reporting.

نویسندگان

Iman Khaksari

Department of Accounting, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran

Mohammadreza Shoorvarzi

Department of Accounting, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran

Alireza Mehrazeen

Department of Accounting, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran

Abolghasem Massihabadi

Department of Accounting, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • S.J. Ahmadi, K. FaghaniMakerani and N. Fazeli, Presenting a model ...
  • N. Aqilah, N.F. Mohammed and A. Kamaluddin, Application of Beneish ...
  • I.R. Andaningsih and I. Rosyidi, The effect of detecting financial ...
  • H. Askaralooj, M.R. Nikbakht, G. Karami and M. Momeni, Development ...
  • M.D. Beneish, The detection of earnings manipulation, Financ. Anal. J. ...
  • M.D. Beneish and P. Vorst, The cost of fraud prediction ...
  • Q. Bolo, F. Barzideh and H. Allahyari Abhari, A model ...
  • R.M. Dani, Financial ratios and fraudulent financial statements: Evidence from ...
  • H. Etemadi and H. Zalqi, Application of logistic regression in ...
  • K. Forgandoost Haqiqi and F. Barwari, Investigating application of analytical ...
  • H. Hariri, A.W.S. Pradana and S.L Widjajanti, Predicting financial statements ...
  • P. Harsanti and U.R. Mulyani, Testing of fraudulent financial statements ...
  • K.G. Hashedi and P. Magalingam, Financial fraud detection applying data ...
  • A. Hosseini, The most important fraud in listed companies, Second ...
  • A. Hosseinzadeh, M. Mousavi Shiri, Z. Hajiha and H. Nikoomaram, ...
  • S. Istikhoroh, Financial target, external pressure, and ineffective monitoring: How ...
  • A. Janabadi and M. Motavasel, The effects of the earnings ...
  • P. Kagias, A. Cheliatsidou, A. Garefalakis, J. Azibi and N. ...
  • A. Khorasani, Examining the effects of applying auditing standards on ...
  • G. Kordestani and R. Tatli, Predicting earnings manipulation: development of ...
  • S. Lehenchuk, T. Mostenska, H. Tarasiuk, I. Polishchuk and M. ...
  • J. Liodorova, M. Barkauskas and R. Sneidere, Detecting asset misappropriation: ...
  • B. Mashayekhi and A. Hosseinpour, Investigating the relationship between real ...
  • N. Rahimian and R. HajiHaidari, Detecting fraud using Beneish’s adjusted ...
  • S.H. Sajjadi and T. Kazemi, Presenting a comprehensive model for ...
  • L. Sedighi Kamal, Fraud in financial statements based on the ...
  • F.H. Sezgin, Estimation financial information manipulation by negative binomial hurdle ...
  • S. Shahsavaripour, Detecting and preventing fraud in accounting, ۷th International ...
  • M.M. Shakoori, A.A. Taherabadi, M. Ghanbari and B. Jamshidinavid, The ...
  • S. She’ri Anaqiz, N. Rahimian, J. Salehi Sadaqiani and A. ...
  • A. Sobhanian, Investigating impact of financial distortions on tax avoidance ...
  • C. Spathis, Detecting false financial statements using published data: some ...
  • R. Syahria, Detecting financial statement fraud using fraud diamond (a ...
  • M. Tabari, H. Mohammadi and H. Arab, Assessing the situation ...
  • H. Vakilifard, S. Jabarzadeh Kangarlooti and A. Poorreza Sultan Ahmadi, ...
  • E.F. Zainudin and H.A. Hashim, Detecting fraudulent financial reporting using ...
  • M. Zare Behnamiri and E. Melkian Kalebasti, Predicting fraud in ...
  • نمایش کامل مراجع